Шрифт:
или, используя (1):
Поделив обе части на dt, получим:
или в иных обозначениях:
Если теперь мы перейдем к пределу при dt стремящемся к нулю, наше приблизительное равенство станет строгим. Когда в курсе математики вводится понятие производной, проделываются аналогичные операции над малыми приращениями аргумента и функции.
Полученное нами уравнение является простейшим дифференциальным уравнением. Его решением является не число, а функция, т.е. формула зависимости с от t.
Дифференциальных уравнений в средней школе не решают, но мы постараемся угадать решение такого простого уравнения, вспомнив свойства показательной функции.
Уравнение (4) показывает нам такую функцию, производная которой пропорциональна ей самой. Вы уже знаете, что это свойство показательной функции.
Для удобства решения (4) произведем в нем замену переменной. Введем новую переменную
Возьмем производную от обеих частей:
Теперь подставим в (4) и получим:
Мы догадываемся, что функция z есть экспонента.
И действительно, уравнению (7) удовлетворит любая функция вида z = A·exp(-kt), в чем легко убедиться, взяв от нее производную. Нужно только полагать, что постоянная А не зависит от времени.
Чтобы теперь найти нужное из множества решений дифференциального уравнения – иными словами, чтобы определить нужное нам значение постоянной А, используем начальное условие.
Но для этого вернемся к прежней переменной с вместо z. Получим:
Наше начальное условие есть предположение о том, что при при t=0 и с=0. Подставив эти значения в (8), получим, что А = и. Иными словами,
или, разрешая относительно с:
График этой функции очень похож на зависимость скорости изменения концентрации от времени, который мы уже разбирали на уроке (рис. 10). Ясно, что так и должно быть, если скорость пропорциональна концентрации, т.е. производная функции пропорциональна ей самой. Концентрация стремится к своему равновесному значению. При этом равновесном значении скорости образования и распада станут равными, и концентрация, соответственно, меняться не будет.
Современный момент на этом графике обозначим буквой Т. Ясно, что эта точка довольно далеко отстоит от равновесного состояния. Как ее определить? Можно было бы использовать значение концентрации 14С в современных живых организмах, вообще на поверхности земли, подставив это значение в (10) и разрешив его относительно Т.
Мы же, располагая данными только современных скоростей образования и распада, возьмем производную от (10) и приравняем к разности современных значений u и v, известных нам на нынешний день.
Действительно, согласно (4):
Нужно только вместо v подставить современное значение скорости распада. Итак, берем производную от выражения (10):
И из (11) и (12) находим: