Шрифт:
Должна… Ничего бы она не делала, никаких приказов не выполняла, не составь Э. М. Браверман специальную программу (читатель может ознакомиться с подробностями по книге А. Г. Аркадьева и Э. М. Бравермана «Обучение машины распознаванию образов», вышедшей в 1964 году). Это было нелёгким делом. Но ещё предстоял эксперимент, который мог не подтвердить идеи молодого математика.
Машине одну за другой показали двести карточек и объяснили (на языке двоичного кода, конечно), что обозначают нанесённые на них изображения. Потом начался экзамен. Перед фотоэлектронным глазом стали появляться знаки таких форм, какие машина ещё не видывала. И она их правильно опознала! Ошибка была допущена лишь в четырёх случаях из восьмисот. Вот он, заслуженный успех!
Да, машина, как и ребёнок, способна учиться обобщениям.
Надо сказать, однако, что возможны и другие подходы к электронному ученику. Например, вовсе не обязательно вводить в машину, как это делал Браверман, заранее разработанную систему основополагающих признаков, с тем чтобы дальнейший процесс обучения только уточнял их. Многие склонны думать, что машина, анализируя группы образов, должна самостоятельно вырабатывать систему характерных признаков, чтобы затем с помощью этих критериев классифицировать показанные ей объекты. (Кстати, цель работы любого графометриста — именно классификация почерков по определённому комплексу признаков.) И машина должна уметь решать множество разнообразных задач в меняющейся обстановке, приспосабливаясь каждый раз к новым ситуациям. Ведь программисту не всегда под силу заранее определить, какие признаки окажутся наиболее существенными, а какими можно пренебречь. Возникающие при этом трудности наглядно иллюстрирует одна восточная притча (со слов журналиста А. М. Кондратова).
Мудрецам показали две группы рисунков: первая состояла из маленьких геометрических фигур (эллипсов, кругов), а вторая — из крупных (но уже не эллипсов и кругов, а прямоугольников). Затем мудрецам предъявили большой овал и спросили: к какой группе фигур его следует отнести?
— К обеим, — ответил мудрец по имени Ага-Ага.
— Только к первой, — высказался другой, которого звали Ага-Ни. — Ибо перед нами овал.
— Позвольте, но ведь фигура-то большая! — возразил Ни-Ага.
— Её надлежит включить во вторую группу.
— Неверно! — подал голос мудрец Ни-Ни. — Новая фигура не имеет отношения ни к первой, ни ко второй группе.
Спор мудрейших должен, был разрешить суд.
— Все четверо правы, — молвил первый судья.
— Все четверо ошибаются! — отрицательно качнул головой второй судья. — Ни у кого не было достаточных оснований, чётких критериев, чтобы решить задачу однозначно.
И все судьи тоже разошлись во мнениях..
Очевидно, здесь допустимы различные варианты. Всё зависит от того, какой признак считать существенным при размещении нового объекта: размеры ли, округлость или угловатость. Но все возможные классификации машина должна выработать и запомнить самостоятельно при рассматривании картинок обеих групп ещё до начала экзамена — до предъявления карточки с большим овалом.
Программу подобного типа удалось составить кандидату физико-математических наук М. М. Бонгарду. Правда, машине показывали не рисунки, а числовые таблицы. Они содержали по три числа в каждой строке. Скажем, 2, 5, и — 30 в первой. А во второй 7, 3 и 84. И так далее. Для всех строчек соблюдался один и тот же, математический, закон: произведение первых двух чисел, умноженное на их разность, равнялось третьему числу. Вторая таблица строилась по другому правилу и, следовательно, принадлежала к иному классу.
Машине предъявляли разные таблицы. При этом не сообщали, каким уравнением описывается взаимосвязь чисел. Электронному следователю вменялось в обязанность самому расшифровать эту закономерность. Наконец, ему предъявили таблицу, которой он ещё не видел. Цифры в ней были совсем другие, но зависимость была знакомой. И машина безошибочно отнесла новую таблицу к своему классу.
Можно держать пари, что учёные, занимающиеся распознаванием образов, меньше всего думают о применении кибернетики в графометрии. Но если машина сегодня опознаёт цифры и буквы, то почему бы ей завтра не научиться различать тончайшие нюансы в их начертаниях, соотнося обнаруженные особенности почерка с характерологическими классификациями личностей?
Однако фантазировать покамест преждевременно. Ибо ни графология, ни графометрия не признаны официальной наукой. Золушка продолжает прозябать на задворках, мечтая о своём замешкавшемся принце, и, видимо, с горечью вспоминает слова Гюго: отбрасывать какое-либо явление, со смехом отворачиваться от него — это значит содействовать банкротству истины.
Письмо и личность… Их взаимосвязь несомненна. Её доказывает хотя бы «существование и огромная практическая ценность почерковедения, успешно применяемого криминалистами, литературоведами, искусствоведами, историками. Болезненные отклонения в почерке помогают психиатрам при диагностике душевных заболеваний. Накоплен огромный опыт. Исследования продолжаются. Родилась и постепенно обретает всё большую самостоятельность обширная и важная область знания — наука о почерке. И один из её интереснейших разделов — графология. Глубокая научная вспашка с привлечением всего арсенала современной техники сможет окончательно показать, насколько плодородна или бесплодна эта неподнятая целина…
Принца всё нет. Принц, где ты?
Движенья… нет?!
— Машины-переводчики, машины-шахматисты, думающие машины, машины-творцы — всё это миф!
— ?!!
— Давным-давно пора прекратить болтовню о необыкновенных способностях машин! Это плод досужей фантазии популяризаторов.
— Но как можно отрицать успехи кибернетики! Это верх несправедливости. Они поистине грандиозны. То ли ещё ждёт нас впереди!