Шрифт:
(a + b)2 = a2 + 2ab + b2;
(a + b)3 = a3 + Зa2b + Зab2 + b3;
(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4.
И так далее. Комментарии излишни: преимущества говорят сами за себя.
А теперь вчитаемся в необычную надгробную надпись:
Путник! Здесь прах погребён Диофанта. И числа поведать Могут, о чудо, сколь долог был век его жизни. Шестую Часть его составляло прекрасное детство, Двунадесятая часть протекла ещё жизни — покрылся Пухом тогда подбородок. Седьмую в бездетном Браке провёл Диофант. Пятилетие минуло; он Был осчастливлен рожденьем прекрасного первенца сына, Коему рок половину лишь жизни прекрасной и светлой Дал на земле по сравненью с отцом. И в печали глубокой Старец земного удела конец восприял, переживши Года четыре с тех пор, как сына лишился. Скажи-ка, Скольких лет жизни достигнув, смерть восприял Диофант?Ну-ка решите задачу в уме, рассуждая — и только, не прибегая к услугам пера и бумаги. Что, трудновато? Ладно, давайте лучше втиснем певучий гекзаметр в строгую метрику формул.
x/6 + x/12 + x/7 + 5 x/2 + 4 = х.
Это уравнение с одним неизвестным решается в два счёта. Ответ: «прекрасное детство» будущего великого математика закончилось в четырнадцать лет. В двадцать один год Диофант сыграл свадьбу, в тридцать восемь у него родился сын, умерший сорока двух лет, когда самому Диофанту стукнуло восемьдесят. Наконец, на восемьдесят четвёртом году великий грек ушёл из жизни. Его не стало (хотя это уже не вытекает из нашего уравнения) в III веке новой эры. Евклид и Аристотель жили и творили в III веке до новой эры. И несмотря на то, что биографии великих мыслителей разделяет более полутысячелетия, во времена Диофанта ещё не родилась алгебра — та самая, которая позволяет нам столь лихо расправляться с трудными арифметическими задачами.
Как ускорился прогресс, насколько богаче стали возможности математики, когда встала на ноги и окончательно утвердилась алгебра, сразу же обретшая права гражданства! А случилось это в эпоху Возрождения — через тысячи лет после появления геометрии и арифметики.
Что касается логики, тоже весьма почтенной старушки («Органон») Аристотеля создан примерно в одно время с «Началами» Евклида), то здесь алгебра не сразу получила признание. Символика и операции математической логики пришлись то ли не по вкусу, то ли не по зубам логикам середины XIX века. А кто осилил булеву алгебру, десятилетиями считали её занятным, однако никчёмным изобретением досужего ума. Положение изменилось лишь к концу XIX века, когда перед наукой во весь рост поднялась серьёзная задача — обосновать самые кардинальные идеи и понятия математики. Аристотелева логика, при всём её совершенстве, вынуждена была сложить оружие перед неодолимыми трудностями. Тут-то и пришлось идти на поклон к логике символической. И понятно почему.
В своё время, разбирая кипу откликов на статью «По следам логических катастроф», напечатанную в журнале «Техника — молодёжи», автор обнаружил массу опровержений всех знаменитых парадоксов. В том числе парадокса Сервантеса. Искренне сочувствуя бедняге Санчо, изо всех сил стараясь ему подсобить, читатели пускались на всевозможные казуистические ухищрения. Одни выискивали смысловые лазейки в формулировке закона. Другие в заявлении чудаковатого пришельца. Третьи — в процедуре исполнения приговора. Что ж, кое-кому это удавалось. Удавалось постольку, поскольку в статье фигурировала популярная версия парадокса со всеми атрибутами реальной житейской ситуации. Зато сформулированное в терминах математической логики с их однозначной трактовкой, не допускающей никаких двусмысленностей, противоречие предстало бы перед нами во всей его роковой, неумолимой, неизбежной, неуничтожимой сущности.
Разумеется, симпатии учёных притягивала и притягивает не только эта строгость и однозначность определений, скрывающаяся за символами математической логики. Сведя построение силлогизмов к буквенным преобразованиям, булева алгебра освободила человека от необходимости держать в голове содержание посылок и промежуточных умозаключений. Вся забота свелась к наблюдению за правильностью алгебраических выкладок, напоминающих решение системы уравнений, А такую, премудрость способен постигнуть даже школьник.
Да, далеко шагнули вперёд математика и логика со времён Зенона и Аристотеля. Появилась и успешно развивается теория доказательств — метаматематика. И тем не менее, несмотря ни на что, парадоксы с невозмутимостью Сфинкса, сквозь загадочно-насмешливую маску каменного колосса- продолжают взирать на все ухищрения логистов, как они тысячелетия назад смотрели на наивные потуги опровергателей. Есть ли выход из тупика? Если да, то где он? Неужели есть вещи, недоступные человеческому разуму?
Бессильная в своём могуществе, математическая логика в недоумении разводит руками.
«Ну и что? — пожмёт плечами читатель. — Разве из-за этих сугубо теоретических, лучше даже сказать, надматематических изъянов хуже действуют столь мощные практические инструменты, как, например, дифференциальное и интегральное исчисление? Или вы забыли, какие чудеса творит кибернетика? То ли будет впереди! А вы всё толкуете о каких-то там парадоксах…»
Спору нет, успехи современной математики грандиозны. Кибернетики — тоже. Электронные машины вторглись в заповедные области человеческого интеллекта… Нынче они навострились не только доказывать известные теоремы, но даже… формулировать новые!
Работая по программе, составленной американским учёным Ваном Хао, универсальная цифровая машина ИБМ-704 за восемь минут тридцать секунд доказала все триста пятьдесят теорем, что составляют целых девять глав в монографии Рассела и Уайтхеда «Основания математики»!
Этим дело не ограничилось. Ван Хао так запрограммировал машину, чтобы она не просто доказывала или опровергала математические предложения, заданные человеком, а сама занялась научным творчеством. И машина охотно принялась печатать одну за другой новые теоремы…