Шрифт:
Минули века. Наивные верования уступили место научным теориям. Глазам людей открылась вся грандиозная сложность проблемы. Однако медицина не оставила надежды на выигрыш в, борьбе со старостью и смертью. Скорее напротив: как раз последнее столетие особенно изобиловало попытками изыскать радикальный способ омоложения. И надо же так случиться, что именно в последние годы снова серьёзно заговорили о живой воде и эликсире молодости!
Эликсир — из-под крана…
Живая вода — это водопроводная минус тяжёлая…
Дейтерий — биологический тормоз…
Под такими аншлагами журналы в 1965 году печатали статьи В. Умчаева (кандидата химических наук В. Мухачева).
На редакции хлынул шквал читательской корреспонденции. Разговоры о талой и дождевой воде вспыхивали на улице, в вагонах метро и пригородных электричек, в лекционных залах и студенческих аудиториях. Тема обсуждалась и «на профессиональном уровне» — в кругах специалистов.
Так родилась сенсация.
Живой читательский интерес к проблеме, который скорее всех дано почувствовать, наверное, в силу профессиональных условий именно журналистам, побудил меня обратиться к литературе и консультантам.
Читатель уже в курсе некоторых интересных геронтологических сведений — они нам пригодятся в дальнейшем.
А теперь сущность гипотезы Мухачева.
Сейчас известно: у водорода не то четыре, не то пять изотопов (открытие пятого вроде бы не подтвердилось). Наиболее распространённый из них — протай Н. Из него чуть ли не на все 99 процентов состоят массивные тела вселенной и межзвёздное вещество. Доля дейтерия несравненно скромнее, во всяком случае на Земле: в морской воде его в 6430 раз меньше, чем протия. О тритии и говорить не приходится. Все изотопы способны вступать в химические соединения. То, что мы пьём, — смесь «разных вод». Есть между ними разница? Несомненно. Дейтериевые соединения куда прочнее протиевых. Скажем, перекись водорода (протия) склонна к самопроизвольным взрывам. Дейтериевая перекись, напротив, вполне устойчива и, как сказал бы пожарник, взрывобезопасна.
Даже самое упругое тело какого-нибудь дюжего молодца на поверку довольно «жидковато» — оно на 60–70 процентов состоит из воды. Все биохимические реакции протекают в водной среде и с её непременным участием. Более того: водород входит в структуру важнейших биополимеров: нуклеиновых кислот, отвечающих за наследственные свойства живых существ, и белков, из которых построены все наши органы. И сколь бы мизерно ни было относительное участие дейтерия в жизненных процессах и структурах, абсолютное количество его атомов в любом организме достигает астрономических значений. И увеличивается к старости. Между тем в процессах на молекулярном уровне вполне может сказаться присутствие одного-единственного атома дейтерия!
Красноречивой иллюстрацией к высказанному опасению служит биосинтез белка.
Белковая цепочка составлена из аминокислот. Типов этих звеньев не так уж и много — всего 23. Однако, сочленяясь в разных комбинациях, они обусловливают пёстрое разнообразие в свойствах наших органов. Для каждого вида белка характерна своя последовательность аминокислот. Малейшее нарушение очерёдности — и свойства белка резко меняются. Известно, что серповидноклеточная анемия (тяжёлый наследственный недуг, поражающий кровь) обязана своим происхождением пустячной вроде бы ошибке при синтезе гемоглобина. — замене одной аминокислоты в молекуле белка на другую.
Нынешние химики умеют соединять разные звенья в полимерную цепочку. Однако в пробирке одна белковая молекула получается длиннее другой, да и аминокислоты не всегда становятся на уготованное им место. Даже у самого тщательного экспериментатора в пробирке встречаются отклонения от проектной «архитектуры» — примерно в каждой сотой молекуле. Если бы клетка работала с тем же процентом брака, мир живого постигла бы катастрофа. Ибо самомалейшая «опечатка» при воспроизведении полимеров грозит тяжёлыми последствиями (вспомните серповидноклеточную анемию!). Вероятность ошибки в работе клетки — один шанс из миллиона миллиардов. Фактически же синтез белка при такой архипунктуальности осуществляется с математической строгостью. Результат — образование полимера с абсолютно упорядоченным чередованием звеньев и требуемой пространственной геометрией. Безукоризненная чёткость в работе обеспечивается здесь прекрасно налаженным и безотказно действующим механизмом — речь идёт о матричном синтезе.
Как известно, матрицей, с которой отпечатываются белки, служит дезоксирибонуклеиновая кислота (ДНК). В структуре, которую обычно сравнивают с телеграфной лентой, записана инструкция, в какой последовательности должны нанизываться аминокислотные звенья, составляющие белковую молекулу. Подобная аналогия не случайна.
ДНК, как и белок, — полимер. Только составлен он не из аминокислот, а из азотистых оснований. Азотистых звеньев в цепочке ДНК тоже много — до 10 миллионов. Но типов их всего четыре: аденин (А), тимин (Т), гуанин (Г), цитозин (Ц). До чего же экономна природа в своих творениях! И уж если азбука Морзе, оперирующая всего двумя символами (точка, тире), способна передавать любую информацию, можно себе представить, сколь богатые возможности таит в себе химический шифр наследственности. Как же ДНК программирует постройку белка?
Каждая из 20 с лишним аминокислот кодируется в ДНК трехбуквенным «словом». Правда, в построении белка ДНК участвует косвенно, «по почте» — через курьера. В качестве «нарочного» подвизается рибонуклеиновая кислота (РНК). Отштампованная по ДНК, она называется матричной — сокращённо мРНК — и представляет собой самый настоящий оттиск, снятый с ДНК. Вернее, синтезированный клеткой из мономеров, плавающих вокруг ДНК в водной среде. Он тоже составлен из звеньев четырёх типов. Причём каждое звено мРНК подгоняется к соответствующему звену ДНК очень точно, как линотипная отливка к матрице. Известно, что такими структурными антиподами являются аденин и тимин, гуанин и цитозин. Стало быть, если матрицей служит слово ГГГ, то отпечатком окажется ЦЦЦ, если ЦГГ, то ГЦЦ и так далее. Правда, если матрицей служит ААА, то на мРНК появится не ТТТ, а УУУ. Перед нами инициалы урацила. Это основание похоже на тимин. Но в отличие от него не входит в состав ДНК. Зато в состав мРНК — да. И азбука мРНК состоит из таких четырёх букв: А, Г, Ц и У. Строгое соответствие пар Г—Ц и А—У вынуждает мРНК однозначно, без разночтений, передавать депешу с командами ДНК на стройплощадку, где монтируется молекула белка.