Шрифт:
Эти слоистые материалы были просто-напросто обычной древесиной, разрезанной на куски и затем снова склеенной. Но существовал, однако, печальный опыт материалов, известных как “улучшенная древесина”, свойства и судьба которой были, казалось, предопределены этим громким названием. Как “улучшалась” древесина? Сначала ее пропитывали некоторым количеством смолы, а затем прессовали до значительно большей плотности. Считалось, что при этом механические свойства материала должны улучшиться. И они действительно улучшались, но, как правило, лишь пропорционально увеличению плотности. В то же время у прессованной древесины значительно снижалась трещиностойкость. Что еще хуже, этот материал разбухал в воде до своих начальных размеров, и разбухание это было почти всегда непредсказуемым и необратимым. И все-таки какое-то время прессованная древесина использовалась для изготовления пропеллеров некоторых типов самолетов.
Совсем иное дело - фанера, которую, пожалуй, следует считать новым и чрезвычайно удачным материалом. Она получается путем склеивания трех или более листов шпона, то есть тонких слоев древесины с перекрестным направлением волокон. Шпон либо нарезается тонкими слоями из бревна на машине, очень напоминающей большой рубанок, либо получается с помощью лущения. Круглое бревно сначала прогревается в течение суток в паровой траншее, а затем устанавливается на специальном лущильном станке. Бревно вращается в станке, а длинный нож врезается в него и начинает по кругу снимать тонкие слои древесины с такой скоростью, что на это зрелище прямо-таки залюбуешься. Далее шпон режется, сушится, из него удаляются дефектные места, и наконец, спрессованный и склеенный на больших прессах, он превращается в фанеру.
Поначалу фанера склеивалась растительными или животными клеями, поэтому она совершенно лишена была влагостойкости и чуть ли не стала почти что бранным словом. Внедрение фенольных клеев все изменило и, между прочим, занятнейшим образом проиллюстрировало, как может трансформироваться отношение к материалу. Современная фанера на фенольных клеях совершенно не поддается воде - она не расслаивается, когда намокает. Поэтому она широко используется в судостроении.
Как и следовало ожидать, размер фанеры при колебаниях влажности изменяется вдвое меньше, чем у обычной древесины. Это значит, что максимальные изменения размеров в двух направлениях составят около 5%. На практике эта величина значительно ниже. Но если поверхностные слои высушиваются, например на горячем солнце, они оказываются под напряжением, растягивающим их поперек волокон. В результате фанера может покрыться густой сеткой малых трещинок. Сами по себе они не слишком страшны, но незакрашенные складки становятся ловушками для влаги и бактерий, что таит в себе известные неприятности. Горячее прессование убивает почти все бактерии и грибки, но после растрескивания попадающая на древесину инфекция в сочетании с водой приводит к быстрому ее гниению.
(обратно)
Аэропланы
Никогда не следует относиться с презрением к каким бы то ни было конструктивным формам, в том числе и к биплану, построенному на струнах и стержнях. Главный показатель, который определяет выбор материалов и конструктивных форм,- это отношение нагрузки на конструкцию к ее размерам. Когда нагрузки сравнительно невелики по отношению к размерам, обычно лучше сосредоточить сжимающие силы в нескольких компактных стержневых элементах (стойках) и распределить растяжение в обшивке и струнах. Именно так построены оснастка парусных кораблей, палатки, ветряные мельницы. С некоторыми оговорками это справедливо и для воздушных шаров. Любые другие решения в подобных случаях приводили бы к тяжелым, дорогим и менее удобным конструкциям.
По понятным причинам все первые самолеты имели очень малую нагрузку на крыло. Размеры во многих случаях были не намного меньше, чем у соответствующих современных самолетов, ну а вес такого самолета составлял менее 10% веса современной машины с жесткой обшивкой. В таких условиях конструкция из ткани, натянутой на каркас из древесины и бамбука, была и логичной, и эффективной. При мощности тогдашних двигателей аэроплан другой конструкции просто не поднялся бы с земли. Форма биплана позволяла построить отличную решетчатую ферму и кессоны - очень жизнеспособные и легкие конструкции. Массивные элементы были нужны только для того, чтобы воспринимать сжатие, и, поскольку главная опасность в таких условиях крылась в потере устойчивости, эти элементы должны были быть возможно более простыми: лучше всего этим целям служили бамбук и ель. Для растянутых элементов использовалась рояльная проволока. Однако соединение бамбуковых элементов, работающих на растяжение, всегда было серьезной проблемой.
Такой способ конструирования давал отличные прочные самолеты лишь тогда, когда конструктор твердо знал, какой элемент будет нагружаться растяжением, а какой - сжатием. Ведь если стойка при необходимости и могла принять на себя растяжение, то уж проволока никогда не сопротивляется сжатию. В некоторых бипланах посложней не всегда можно было проследить пути, по которым передается нагрузка. Недаром в ходу была банальная шутка: лучший способ проверить правильность оснастки крыла биплана - посадить в середину канарейку; если ей удастся вылететь наружу - в конструкции какой-то непорядок.
Печально известен случаи с бипланом “Кафедральный собор”. Его создатель С.Ф. Коуди питал пристрастие к сложной путанице расчалок, но ему не хватало технической грамотности. Мой дед, один из пионеров авиации, рассказывал мне, что однажды он долго спорил с Коуди по поводу того, будет ли в полете какой-то элемент испытывать растяжение или сжатие. Коуди настаивал, что элемент будет растянут, и поставил струну. Правота моего деда обернулась для Коуди трагически - он погиб через несколько минут после взлета. Есть какая-то ирония судьбы в том, что ситуация с “Кафедральным собором” была прямо противоположна неприятностям с кладкой каменных соборов: они рушились из-за того, что в тех местах, где, по предположению строителей, должно было быть сжатие, оказывалось растяжение.
Потребовалось немало времени и жизней, прежде чем были в достаточной степени изучены и поняты условия нагружения, в которых оказывается самолет в полете. Англичане во многом обязаны этим достижением группе одаренных людей, собравшихся в Фарнборо в первую мировую войну (знаменитая Чадлайфская кучка[42]).
Принципы расчета и испытаний самолетов на прочность остаются и сейчас, в эпоху сверхзвуковых истребителей, во многом теми же, что и в годы деревянных бипланов, хотя в практике этих операций появилось много нового.