Вход/Регистрация
Почему мы не проваливаемся сквозь пол
вернуться

Гордон Джеймс Эдвард

Шрифт:

Ступенька дает довольно уютное пристанище блуждающим молекулам, которые стремятся осесть именно здесь. Так и каменщик кладет кирпичи на уступе кладки. И точно так же, как и в случае кирпичной кладки, добавив один элементик, мы не уничтожим ступеньку, а лишь переместим ее вдоль верхушки стены. Этот механизм в действии наблюдали Банн и Эммет в 1946 году. Напомним, что именно так получаются ступеньки, которые ослабляют поверхность усов и других кристаллов (глава 3).

Франк рассуждал примерно так. Допустим, что ступеньки роста существуют. Что же тогда получается, когда движущаяся ступенька доходит до кромки кристалла? По-видимому, она должна исчезнуть, как исчезает уступ на кирпичной стене, когда каменщик достигает конца стены. Если так, то как могла бы возродиться ступенька, чтобы начал расти следующий слой?

Ответ Франка был блестяще прост. Кристаллы никогда не строятся, как дома, из слоев кирпича. Ступенька роста никогда не исчезает на кромке, потому что кристалл строится подобно винтовой лестнице. Значит, кристалл просто “накручивается” сам на себя, все время используя одну и ту же ступеньку. Подобно тэйлоровой гипотезе о краевых дислокациях, идея о винтовых дислокациях покоряла своей логикой, и интуитивно казалось, что она должна быть верной. Так оно и получилось. Вскоре Форти и другие экспериментаторы подтвердили существование винтовых дислокаций (рис. 50).

Рис. 50. Схема винтовой дислокации.

В схеме винтовой лестницы самой труднообъяснимой была ситуация в центре. Здесь, конечно, существует какой-то пробел, нестыковка, образующие некоторую линию по оси винта. Это и есть сама дислокация. Как и в случае краевой дислокации, межатомные связи здесь сильно деформированы, хотя ничего подобного отверстию, в обычном смысле этого слова, нет. Но вот усы довольно часто бывают полыми, трубчатыми. Возможная причина этого в том, что такие усы росли с винтовой дислокацией, ступенька которой была высотой не в одну, а в несколько молекул. Если так, то тогда деформации в ядре дислокации могут быть очень большими. Следовательно, кристалл может предпочесть энергии деформации поверхностную энергию, то есть расти с отверстием посередине.

Как случается с большинством удачных гипотез, с гипотезой о винтовой дислокации перестарались: с нею связывался почти каждый аспект роста почти каждого вида кристаллов. Сегодня, по-видимому, ясно, что многие кристаллы обходятся в своем росте без механизма Франка, но факт остается фактом - очень многие кристаллы используют этот механизм, винтовая дислокация - вполне реальное и очень важное явление.

Совсем не обязательно, чтобы дислокация была целиком краевого или винтового типа. Дислокационная линия может начаться как краевая, а закончиться - как винтовая, и наоборот. А между началом и концом она может быть отчасти винтовой, а отчасти - краевой. В таких случаях говорят, что дислокация имеет винтовую и краевую компоненты. Но правила движения двух типов дислокаций неодинаковы, и в этом одна из причин сложностей поведения реальных дислокаций, представляющих собой обычно искривленные пространственные линии.

Сегодня теория дислокации - тщательно разработанная и поощряемая наука, которая, несомненно, пролила свет на поведение твердых тел, особенно металлов. Теперь мы в значительной мере понимаем реальное поведение металлов. С другой стороны, нельзя сказать, что знания о дислокациях привели к каким-то радикальным усовершенствованиям механических свойств материалов. Что касается металлов, то можно, пожалуй, сказать, что большая часть возможных и важных улучшений была сделана еще традиционными эмпирическими методами, а роль дислокационной теории свелась к объяснению того, почему и как эти улучшения получились.

(обратно)

Наблюдение дислокаций

Какой правдоподобной и логичной ни была бы научная гипотеза, для большинства людей она остается все-таки голой абстракцией, пока нельзя будет что-то потрогать собственными руками или увидеть собственными глазами. Косвенных или математических доказательств для них недостаточно. Примером может служить тепловая теория. Из элементарной физики каждый знает, что температура вещества определяется непрерывным и беспорядочным движением его молекул. Но поскольку в том же курсе физики говорится еще, что молекулы слишком малы, чтобы их видеть, а также потому, что ощущения тепла и холода никоим образом не связываются с представлением о движущихся частицах, - мысль о теплоте, как о молекулярном движении, обычно не ощущается нами как реальность.

Ботаник Броун в 1827 году, наблюдая в микроскоп пыльцу некоторых цветов, обнаружил, что она находится в непрерывном приплясывании. Броуновское движение мельчайших твердых пылинок, взвешенных в воде, легко можно увидеть. Капните, например, обычной китайской туши или акварели на предметное стеклышко микроскопа и, накрыв каплю другим стеклом, взгляните на нее при довольно большом увеличении обычного оптического микроскопа. Вы увидите, что частицы помельче носятся в совершенно сумасбродной джиге. Сколько бы вы ни смотрели на этот танец, он будет продолжаться. А за танцем кроется вот что. Сами частицы туши или краски имеют что-нибудь около микрона в поперечнике, то есть они в несколько тысяч раз больше окружающих их молекул жидкости. Молекулы носятся взад-вперед совершенно беспорядочным образом. Наши частицы вовлекаются в эту толчею. Те частицы, что покрупнее, никак не реагируют на толчки, а вот для частиц помельче молекулярные толчки оказываются чувствительными, они прыгают от них в разные стороны так, что все это видно в обычный оптический микроскоп.

После того как вы увидели своими глазами броуновское движение, ваше представление о природе теплоты будет уже совсем иным. Теперь вы можете сказать, что не просто заучили какие-то объективные научные истины, а уже на ты с кинетической теорией тепла. Разница примерно такая же, как читать о заходе солнца и самому наблюдать закат.

То же самое и с дислокациями. Абстрактная теория становилась очень осязаемым явлением. Но как же увидеть дислокации? Прежде всего с помощью химического травления. Мы уже говорили, что деформированные межатомные связи более уязвимы для химических и физических воздействий, чем недеформированные. Следовательно, если протравить кристалл (обычно в кислотном растворе), то места, где дислокации выходят на поверхность, протравятся более интенсивно, чем окружающий материал. В результате на поверхности кристалла появится серия так называемых ямок травления, которые обычно легко просматриваются в оптический микроскоп. Такая техника наблюдения дислокаций очень распространена, и специалисты, наблюдая полученные путем травления оспинки, могут сделать довольно далеко идущие выводы. Одним из ухищрений здесь является раскалывание кристалла надвое. Любая дислокация, существовавшая в кристалле до начала эксперимента и проходившая через плоскость раскола, будет, конечно, одной и той же на обеих половинках. Одна из половинок выбирается как контрольная и травится немедленно, чтобы выявить исходную дислокационную картину, а другая половинка деформируется (либо с нею ставится какой-то другой эксперимент), а уж затем травится. Сравнивая картину ямок травления на двух поверхностях, можно видеть, какие из дислокаций образовались в ходе эксперимента, а какие - передвинулись.

  • Читать дальше
  • 1
  • ...
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: