Шрифт:
Поэтому, если мы приложим к плоской пластинке растягивающее напряжение s1, она удлинится упругим образом, так что в направлении растяжения деформация будет иметь величину e1 = s1/E.
Однако, кроме того, пластинка сократится в поперечном направлении (то есть в направлении под прямым углом к напряжению s1), и величину соответствующей деформации мы обозначим e2. Пуассон обнаружил, что для каждого материала отношение деформаций e1 и e2 есть величина постоянная, и это отношение теперь принято называть коэффициентом Пуассона. Ниже мы всюду будем использовать для этой величины обозначение . Таким образом, для данного материала, подвергаемого простому одноосному нагружению напряжением s1, =e2/e1 = коэфициент Пуассона [50]
50
Поскольку деформация e2 всегда имеет знак, противоположный знаку деформации e1, коэффициент Пуассона обязан быть отрицательным и выражаться числом со знаком минус. Однако знак минус мы будем опускать. В вычислениях, которые мы будем делать, это будет компенсировано нужным выбором знака в соответствующих формулах.
Деформацию e1 в направлении напряжения s1 можно назвать первичной деформацией, а деформацию e2, вызванную напряжением s1 в перпендикулярном ему направлении, - вторичной деформацией (рис. 55). Согласно этому, e2 = e1, а так как e1 = s1 / E (это - закон Гука), то e2 = s1 / E.
Рис. 55. При одноосном нагружении твердого тела растягивающим напряжением s1 тело испытывает в направлении этого нагружения деформацию e1, а в поперечном направлении сокращается, при этом деформация равна e2.
Таким образом, если мы знаем значения величин и E, мы можем вычислить и первичную, и вторичную деформации.
Для материалов, используемых в технике, таких, как металлы, камень и бетон, значения лежат всегда между 1/4 и 1/3. Для твердых биологических материалов значения коэффициента Пуассона обычно выше, и часто они лежат вблизи 1/2. Преподаватели элементарной теории упругости сказали бы вам, что коэффициент Пуассона не может принимать значений больше 1/2, иначе происходили бы разного рода абсурдные и неприемлемые вещи. Это справедливо лишь отчасти, и значения коэффициента Пуассона для некоторых биологических материалов являются очень высокими, часто они больше единицы [51] . Экспериментальное значение коэффициента Пуассона для моего живота, измеренное недавно мною в ванне, составляет примерно единицу (см. сноску выше).
51
Чтобы избавить негодующих специалистов от лишней переписки, замечу, что мне хорошо известно о связанных с этим энергетических аспектах. Такие аномалии имеют разумное объяснение.
Таким образом, как сказано выше, благодаря коэффициенту Пуассона, если мы растягиваем в каком-либо одном направлении кусок материала, такой, как пленка или стенка артерии, он удлиняется в этом направлении, но одновременно сокращается в перпендикулярных. Поэтому в случаях, когда растягивающее напряжение действует не в одном, а в двух взаимно перпендикулярных направлениях, возникающие деформации будут разностью тех деформаций, которые создало бы каждое из этих напряжений в отдельности, и окажутся поэтому меньше последних.
При одновременном действии напряжений s1 и s2 суммарная деформация в направлении действия s1 будет e1 = (s1– s2)/E, а суммарная деформация в направлении действия s2 будет e2 = (s2– s1)/E.
Отсюда, используя результаты, приведенные в гл. 5 [52] , с учетом коэффициента Пуассона получаем, что продольная деформация стенок трубы, находящейся под внутренним давлением и сделанной из материала, подчиняющегося закону Гука, будет e2 = (rp/2tE)(1 - 2), где r– радиус, р– давление, t– толщина стенок.
52
s1/s2 = 2;s2= rp/2t. – Прим. перев.
В результате увеличение длины трубы оказывается значительно меньшим, чем можно было бы ожидать; для гуковского же материала с коэффициентом Пуассоны, равным 1/2, продольные перемещения вообще отсутствуют. В действительности, как говорилось выше, материал стенок артерий не подчиняется закону Гука, в то же время коэффициент Пуассона для него, вероятно, больше 1/2. Возможно, эти два фактора взаимно компенсируются, поскольку соответствующие удлинения, фактически наблюдаемые в эксперименте, очень малы [53] . Несомненно, тот факт, что артерии постоянно находятся в организме в натянутом состоянии, свидетельствует о мерах предосторожности, принятых Природой против любых возможных остаточных удлинений кровеносных сосудов.
53
Примечание для биомехаников. Проведенное рассуждение на основе закона Гука является упрощенным. Для систем, не подчиняющихся закону Гука, если обозначить E1 и E2 соответвующие касательные модули, продольная деформация приближается к нулю при условии, что (E1/E2) = 2. В то время как для большинства мягких тканей при деформациях объем приблизительно остается постоянным, что свидетельствует о близости для них коэффициента Пуассона к 1/2, деформации большинства мембран являются плоскими, то есть мембраны при растяжении не утончаются, и, таким образом, для них коэффициент Пуассона составляет примерно единицу - как для моего живота. Значение E1/E2, отвечающее отсутствию продольной деформации, оказывается при этом около двух, что довольно правдоподобно. Но почему, однако, пленка не становится тоньше при ее растяжении? В связи с этим вопросом см., например, Evans Е. A. Proc. Int. Conf. on Comparative Physiology (North Holland Publishing Company, 1974).