Шрифт:
В чем специфика этого силлогизма? С помощью какого преобразования посылок получается здесь вывод?
Мы уже знаем, что каждое категорическое суждение можно представить как отношение объемов понятий, входящих в суждение. Это в равной мере относится и к посылкам и к заключению. В заключении устанавливается определенное отношение между объемами понятий. Но на каком основании? На основании того отношения, которое дается в посылках. В посылке «все млекопитающие дышат легкими» класс млекопитающих включается в класс дышащих легкими; в другой посылке класс дельфинов включается в класс млекопитающих. Поэтому в заключении мы можем класс дельфинов включить в класс существ, дышащих легкими (рис. 7).
В результате умозаключения понятие «млекопитающие» выпадает. Нас интересует в данном случае отношение дельфинов и существ, дышащих легкими; поэтому на основании посылок мы прямо выводим в заключении интересующее нас отношение «дельфины дышат легкими» (рис. 8).
Аналогичный процесс рассуждения имеет место и во всех других случаях умозаключений, называемых категорическими силлогизмами. Таким образом, всякий категорический силлогизм есть такое умозаключение, в котором определяется отношение объемов двух понятий на основании тех отношений между понятиями, которые даны в посылках.
Понятия, между которыми устанавливаются отношения в посылках и в заключении силлогизма, называются терминами. Понятия, которые входят в заключение, называются крайними терминами: субъект заключения — меньший крайний термин S, предикат заключения — больший крайний термин P.
В нашем примере меньшим термином будет «дельфин», большим — «существа, дышащие легкими».
Оба эти термина есть и в посылках; они связываются в заключении на основании того, что о них утверждается в посылках. Но в посылках есть еще понятие «млекопитающие», которого нет в заключении. Это понятие связывает в посылках крайние термины. В каждую посылку входит один из крайних терминов, и это третье понятие, которое называется средним термином, обозначается буквой M — первой буквой латинского слова «medius» — «средний». Посылка, в которую входит меньший термин, то есть субъект заключения, называется меньшей посылкой, а та, в которую входит больший термин, то есть предикат заключения, называется большей посылкой. Отметим, что меньший термин обозначается буквой S, а больший — буквой P не только в заключении, но и в посылках, несмотря на то что там S может не быть субъектом, а P может не быть предикатом.
Все категорические силлогизмы состоят из простых Категорических суждений. Но суждения, как мы знаем, могут быть и иного типа.
Разделительное суждение в сочетании с категорическим образует разделительно-категорический силлогизм, например:
Государство может быть монархией, олигархией или демократией;
Венецианская республика не была ни монархией, ни демократией;
———————————————————————————————————
Венецианская республика была олигархическим государством.
При той же самой большей посылке меньшая может измениться; тогда силлогизм получит такой вид:
Государство может быть монархией, олигархией или демократией;
Венецианская республика была олигархическим государством;
———————————————————————————————————
Венецианская республика не была ни монархией, ни демократией.
В первом силлогизме заключение имеет положительную связку, во втором — отрицательную. В связи с этим силлогизм первой формы называется утверждающим, силлогизм второй формы — отрицающим. Если представить их в общем виде с помощью букв, то получим следующие формулы разделительно-категорического силлогизма:
утверждающего
S есть или P1, или P2, или P3
S не есть ни P1, ни P2
———————————
S есть P3
отрицающего
S есть или P1, или P2, или P3
S есть P1
———————————
S не есть ни P2, ни P3
Преобразование посылок в утверждающем силлогизме заключается в том, что на основании меньшей посылки (S не есть ни P1, ни P2) исключаются все предикаты большей посылки, кроме одного (P3), который отсутствует в меньшей, и он переходит в качестве предиката в заключение: S есть P3. В отрицательной форме, наоборот, меньшая посылка (S есть P1) как бы выбирает один из предикатов большей посылки, а заключение отбрасывает остальные: S не есть ни P2, ни P3.
Если сложное разделительное суждение в соединении с категорическим дает разделительно-категорический силлогизм, то соединение сложного условного суждения с категорическим образует силлогизм, называемый соответственно условно-категорическим, например:
1) если человек заинтересован в результате своего труда, он
хорошо трудится; Иванов заинтересован в результате своего труда;
——————————————————————————
Иванов хорошо трудится.
или