Шрифт:
Таким образом, мы можем сформулировать второе правило, выполнение которого необходимо для правильности вывода в категорическом силлогизме: средний термин должен быть распределен хотя бы в одной из посылок.
В вышеприведенном примере вывод оказался истинным, несмотря на нераспределенность среднего термина. Это получилось совершенно случайно. В других случаях из истинных посылок вывод получится ложный, если средний термин в этих посылках не распределен, например:
все рыбы размножаются икрой;
лягушки размножаются икрой;
————————————————
лягушки — рыбы.
Средний термин «размножаются икрой» не распределен ни в большей, ни в меньшей посылке, так как не все размножающиеся икрой — рыбы и не все размножающиеся икрой — лягушки.
Довольно часто приходится встречаться с тем, что человека относят к определенной группе, например, к тому или иному философскому направлению, на основе сходства отдельных высказываний этого человека с высказываниями представителей данного философского направления.
Следует отметить, что нераспределенность среднего термина наблюдается не только в том случае, когда он является предикатом в обеих посылках. Средний термин может быть не распределен и тогда, когда он является субъектом одной из посылок, например:
многие металлы тонут в воде;
натрий — металл;
————————
натрий тонет в воде.
Средний термин здесь «металл». В большей посылке он не распределен как субъект частного суждения, а в меньшей — как предикат утвердительного.
Теперь мы можем разобрать и ту логическую ошибку, которой открывается наша брошюра. Из какого положения можно вывести, что треугольник со сторонами 3, 4 и 5 будет прямоугольным? Если мы будем выводить это из теоремы Пифагора, то получим такой силлогизм:
во всяком прямоугольном треугольнике квадрат одной стороны равен сумме квадратов двух других сторон;
в данном треугольнике квадрат одной стороны равен сумме квадратов двух других сторон;
—————————————————
этот треугольник прямоугольный.
Такой силлогизм неправилен. Вывод «этот треугольник прямоугольный» из данных посылок не следует, так как здесь не распределен средний термин. Обращать это суждение нельзя, так как из общеутвердительного суждения при обращении получится частноутвердительное и средний термин опять не будет распределен ни в одной из посылок:
некоторые треугольники, у которых квадрат одной стороны равен сумме квадратов двух других сторон, являются прямоугольными;
в данном треугольнике квадрат одной стороны равен сумме квадратов двух других сторон;
————————————————————
данный треугольник прямоугольный.
Средний термин был бы распределен, если бы большей посылкой было суждение «всякий треугольник, в котором сумма квадратов двух сторон равна квадрату третьей, является прямоугольным». Мы можем взять это суждение в качестве посылки для нашего силлогизма, так как существует теорема, обратная теореме Пифагора, и она выражается именно в виде этого суждения. Итак:
всякий треугольник, в котором квадрат одной стороны равен сумме квадратов двух других сторон, прямоугольный;
в данном треугольнике квадрат стороны равен сумме квадратов двух других сторон;
—————————————————
этот треугольник прямоугольный.
Средний термин здесь распределен в большей посылке, как субъект общеутвердительного суждения. Заключение «этот треугольник прямоугольный» в данном случае будет вытекать из посылок. Но выводить его непосредственно из теоремы Пифагора, как это сделал поступающий в вуз, нельзя — в этом случае не соблюдается правило распределенности терминов, вследствие чего умозаключение становится логически ошибочным. Теперь рассмотрим такой силлогизм:
все рыбы дышат жабрами;
кит — не рыба;
———————
кит не дышит жабрами.
Правилен ли вывод в этом силлогизме? С точки зрения известных нам двух правил здесь как будто все в порядке: в силлогизме три термина, средний термин «рыба» в большей посылке распределен; и посылки и заключение — суждения истинные. И тем не менее этот вывод содержит логическую ошибку. В этом нетрудно убедиться, сравнив его со следующим силлогизмом:
помидоры съедобны;
огурцы — не помидоры;
————————————
следовательно, огурцы не съедобны.
Обе посылки здесь истинны, но вывод явно ложен; следовательно, силлогизм неправилен.