Вход/Регистрация
100 великих учёных
вернуться

Самин Дмитрий К.

Шрифт:

Много написал учёный сочинений об изгибе и колебании упругих стержней. Вопросы эти интересны не только в математическом, но и в практическом отношении.

Фридрих Великий давал учёному поручения чисто инженерного характера. Так, в 1749 году он поручил ему осмотреть канал Фуно между Гавелом и Одером и дать рекомендации по исправлению недостатков этого водного пути. Далее ему поручено было исправить водоснабжение в Сан-Суси.

Результатом этого стало более двадцати мемуаров по гидравлике, написанных Эйлером в разное время. Уравнения гидродинамики первого порядка с частными производными от проекций скорости, плотности к давлению называются гидродинамическими уравнениями Эйлера.

Покинув Петербург, Эйлер сохранил самую тесную связь с русской Академией наук, в том числе официальную: он был назначен почётным членом, и ему была определена крупная ежегодная пенсия, а он, со своей стороны, взял на себя обязательства в отношении дальнейшего сотрудничества. Он закупал для нашей академии книги, физические и астрономические приборы, подбирал в других странах сотрудников, сообщая подробнейшие характеристики возможных кандидатов, редактировал математический отдел академических записок, выступал как арбитр в научных спорах между петербургскими учёными, присылал темы для научных конкурсов, а также информацию о новых научных открытиях и т. д. В доме Эйлера в Берлине жили студенты из России: М. Софронов, С. Котельников, С. Румовский, последние позднее стали академиками.

Из Берлина Эйлер, в частности, вёл переписку с Ломоносовым, в творчестве которого он высоко ценил счастливое сочетание теории с экспериментом. В 1747 году он дал блестящий отзыв о присланных ему на заключение статьях Ломоносова по физике и химии, чем немало разочаровал влиятельного академического чиновника Шумахера, крайне враждебно относившегося к Ломоносову.

В переписке Эйлера с его другом академиком Петербургской академии наук Гольдбахом мы находим две знаменитые «задачи Гольдбаха»: доказать, что всякое нечётное натуральное число есть сумма трёх простых чисел, а всякое чётное — двух. Первое из этих утверждений было при помощи весьма замечательного метода доказано уже в наше время (1937) академиком И. М. Виноградовым, а второе не доказано до сих пор.

Эйлера тянуло назад в Россию. В 1766 году он получил через посла в Берлине, князя Долгорукова, приглашение императрицы Екатерины II вернуться в Академию наук на любых условиях. Несмотря на уговоры остаться, он принял приглашение и в июне прибыл в Петербург.

Императрица предоставила Эйлеру средства на покупку дома. Старший из его сыновей Иоганн Альбрехт стал академиком в области физики, Карл занял высокую должность в медицинском ведомстве, Христофора, родившегося в Берлине, Фридрих II долго не отпускал с военной службы, и потребовалось вмешательство Екатерины II, чтобы тот смог приехать к отцу. Христофор был назначен директором Сестрорецкого оружейного завода.

Ещё в 1738 году Эйлер ослеп на один глаз, а в 1771-м после операции почти совсем потерял зрение и мог писать только мелом на чёрной доске, но благодаря ученикам и помощникам. И. А. Эйлеру, А. И. Локселю, В. Л. Крафту, С. К. Котельникову, М. Е. Головину, а главное Н. И. Фуссу, прибывшему из Базеля, продолжал работать не менее интенсивно, чем раньше.

Эйлер, при своих гениальных способностях и замечательной памяти, продолжал работать, диктовать свои новые мемуары. Только с 1769 по 1783 год Эйлер продиктовал около 380 статей и сочинений, а за свою жизнь написал около 900 научных работ.

Работа 1769 года «Об ортогональных траекториях» Эйлера содержит блестящие соображения о получении с помощью функции комплексной переменной из уравнений двух взаимно ортогональных семейств кривых на поверхности (т. е. таких линий, как меридианы и параллели на сфере) бесконечного числа других взаимно ортогональных семейств. Работа эта в истории математики оказалась очень важной.

В следующей работе 1771 года «О телах, поверхность которых может быть развёрнута в плоскость» Эйлер доказывает знаменитую теорему о том, что любая поверхность, которую можно получить лишь изгибая плоскость, но не растягивая её и не сжимая, если она не коническая и не цилиндрическая, представляет собой совокупность касательных к некоторой пространственной кривой.

Столь же замечательны работы Эйлера по картографическим проекциям.

Можно себе представить, каким откровением для математиков той эпохи явились хотя бы работы Эйлера о кривизне поверхностей и о развёртывающихся поверхностях. Работы же, в которых Эйлер исследует отображения поверхности, сохраняющие подобие в малом (конформные отображения), основанные на теории функций комплексного переменного, должны были казаться прямо-таки трансцендентными. А работа о многогранниках начинала совсем новую часть геометрии и по своей принципиальности и глубине стояла в ряду с открытиями Евклида.

Неутомимость и настойчивость в научных исследованиях Эйлера были таковы, что в 1773 году, когда сгорел его дом и погибло почти всё имущество его семейства, он и после этого несчастья продолжал диктовать свои исследования. Вскоре после пожара искусный окулист, барон Вентцель, произвёл операцию снятия катаракты, но Эйлер не выдержал надлежащего времени без чтения и ослеп окончательно.

В том же 1773 году умерла жена Эйлера, с которой он прожил сорок лет. Через три года он вступил в брак с её сестрой, Саломеей Гзелль. Завидное здоровье и счастливый характер помогали Эйлеру «противостоять ударам судьбы, которые выпали на его долю… Всегда ровное настроение, мягкая и естественная бодрость, какая-то добродушная насмешливость, умение наивно и забавно рассказывать делали разговор с ним столь же приятным, сколь и желанным…» Он мог иногда вспылить, но «был не способен долго питать против кого-либо злобу…» — вспоминал Н. И. Фусс.

  • Читать дальше
  • 1
  • ...
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: