Шрифт:
В 1795 году Гаусса охватывает страстный интерес к целым числам. Незнакомый с какой бы то ни было литературой, он должен был всё создавать себе сам. И здесь он вновь проявляет себя как незаурядный вычислитель, пролагающий пути в неизвестное. Осенью того же года Гаусс переезжает в Гёттинген и прямо-таки проглатывает впервые попавшуюся ему литературу: Эйлера и Лагранжа.
«30 марта 1796 года наступает для него день творческого крещения… — пишет Ф. Клейн. — Гаусс уже занимался с некоторого времени группировкой корней из единицы на основании своей теории „первообразных“ корней. И вот однажды утром, проснувшись, он внезапно ясно и отчётливо осознал, что из его теории вытекает построение семнадцатиугольника… Это событие явилось поворотным пунктом жизни в Гаусса. Он принимает решение посвятить себя не филологии, а исключительно математике».
Работа Гаусса надолго становится недосягаемым образцом математического открытия. Один из создателей неевклидовой геометрии Янош Бойяи называл его «самым блестящим открытием нашего времени или даже всех времён». Сколь трудно было это открытие постигнуть! Благодаря письмам на родину великого норвежского математика Абеля, доказавшего неразрешимость в радикалах уравнения пятой степени, мы знаем о трудном пути, который он прошёл, изучая теорию Гаусса. В 1825 году Абель пишет из Германии: «Если даже Гаусс — величайший гений, он, очевидно, не стремился, чтобы все это сразу поняли…» Работа Гаусса вдохновляет Абеля на построение теории, в которой «столько замечательных теорем, что просто не верится». Несомненно влияние Гаусса и на Галуа.
Сам Гаусс сохранил трогательную любовь к своему первому открытию на всю жизнь.
«Рассказывают, что Архимед завещал построить над своей могилой памятник в виде шара и цилиндра в память о том, что он нашёл отношение объёмов цилиндра и вписанного в него шара — 3:2. Подобно Архимеду, Гаусс выразил желание, чтобы в памятнике на его могиле был увековечен семнадцатиугольник. Это показывает, какое значение сам Гаусс придавал своему открытию. На могильном камне Гаусса этого рисунка нет, но памятник, воздвигнутый Гауссу в Брауншвейге, стоит на семнадцатиугольном постаменте, правда, едва заметном зрителю», — писал Г. Вебер.
30 марта 1796 года, в день, когда был построен правильный семнадцатиугольник, начинается дневник Гаусса — летопись его замечательных открытий. Следующая запись в дневнике появилась уже 8 апреля. В ней сообщалось о доказательстве теоремы квадратичного закона взаимности, которую он назвал «золотой». Частные случаи этого утверждения доказали Ферма, Эйлер, Лагранж. Эйлер сформулировал общую гипотезу, неполное доказательство которой дал Лежандр. 8 апреля Гаусс нашёл полное доказательство гипотезы Эйлера. Впрочем, Гаусс ещё не знал о работах своих великих предшественников. Весь нелёгкий путь к «золотой теореме» он прошёл самостоятельно!
Два великих открытия Гаусс сделал на протяжении всего десяти дней, за месяц до того, как ему исполнилось 19 лет! Одна из самых удивительных сторон «феномена Гаусса» заключается в том, что он в своих первых работах практически не опирался на достижения предшественников, открыв как бы заново за короткий срок то, что было сделано в теории чисел за полтора века трудами крупнейших математиков.
В 1801 году вышли знаменитые «Арифметические исследования» Гаусса. Эта огромная книга (более 500 страниц крупного формата) содержит основные результаты Гаусса. Книга была издана на средства герцога и ему посвящена. В изданном виде книга состояла из семи частей. На восьмую часть денег не хватило. В этой части речь должна была идти об обобщении закона взаимности на степени выше второй, в частности — о биквадратичном законе взаимности. Полное доказательство биквадратичного закона Гаусс нашёл лишь 23 октября 1813 года, причём в дневниках он отметил, что это совпало с рождением сына.
За пределами «Арифметических исследований» Гаусс, по существу, теорией чисел больше не занимался. Он лишь продумывал и доделывал то, что было задумано в те годы.
«Арифметические исследования» оказали огромное влияние на дальнейшее развитие теории чисел и алгебры. Законы взаимности до сих пор занимают одно из центральных мест в алгебраической теории чисел.
В Брауншвейге Гаусс не имел литературы, необходимой для работы над «Арифметическими исследованиями». Поэтому он часто ездил в соседний Гельмштадт, где была хорошая библиотека. Здесь в 1798 году Гаусс подготовил диссертацию, посвящённую доказательству Основной теоремы алгебры — утверждения о том, что всякое алгебраическое уравнение имеет корень, который может быть числом действительным или мнимым, одним словом — комплексным. Гаусс критически разбирает все предшествующие попытки доказательства и с большой тщательностью проводит идею д'Аламбера. Безупречного доказательства всё же не получилось, так как не хватало строгой теории непрерывности. В дальнейшем Гаусс придумал ещё три доказательства Основной теоремы (последний раз — в 1848 году).
«Математический век» Гаусса — менее десяти лет. При этом большую часть времени заняли работы, оставшиеся неизвестными современникам (эллиптические функции).
Гаусс считал, что может не торопиться с публикацией своих результатов, тридцать лет так и было. Но в 1827 году сразу два молодых математика — Абель и Якоби — опубликовали многое из того, что было им получено.
О работах Гаусса по неевклидовой геометрии узнали лишь при публикации посмертного архива. Так Гаусс обеспечил себе возможность спокойно работать отказом обнародовать своё великое открытие, вызвав несмолкающие по сей день споры о допустимости занятой им позиции.
С наступлением нового века научные интересы Гаусса решительно сместились в сторону от чистой математики. Он много раз эпизодически будет обращаться к ней, и каждый раз получать результаты, достойные гения. В 1812 году он опубликовал работу о гипергеометрической функции. Широко известна заслуга Гаусса в геометрической интерпретации комплексных чисел.
Новым увлечением Гаусса стала астрономия. Одной из причин, по которой он занялся новой наукой, была прозаическая. Гаусс занимал скромное положение приват-доцента в Брауншвейге, получая 6 талеров в месяц. Пенсия в 400 талеров от герцога-покровителя не настолько улучшила его положение, чтобы он мог содержать семью, а он подумывал о женитьбе. Получить где-нибудь кафедру по математике было непросто, да Гаусс и не очень стремился к активной преподавательской деятельности. Расширяющаяся сеть обсерваторий делала карьеру астронома более доступной.