Шрифт:
Однако для получения таким способом достаточных расходов массы при плотности межпланетной среды нужны очень высокие потенциалы ракеты относительно окружающего пространства. Для корабля диаметром 15 м при потенциале 106 В массовый поток составит 4 · 10–8 кг/с. При доускорении этого потока, скажем, потенциалом в 10 раз большим, тяга двигателя составит 0,03 кгс. Но ускорение разностью потенциалов 107 В соответствует энергии частиц, образующихся при термоядерных реакциях. В этом случае если использовать их в качестве отбрасываемой массы, добавление ионов космической плазмы не даст заметного выигрыша в тяге.
Подводя итоги всему сказанному, можно сделать вывод о том, что использование межпланетной, а тем более межзвездной среды в качестве рабочего тела ракетных двигателей станет возможным, если характеристики существующих источников магнитного поля будут увеличены в сотни тысяч раз. Пути такого повышения в настоящее время даже неизвестны.
Однако в межпланетном пространстве имеется достаточное количество макротел — планет, их спутников, астероидов, метеоритов. Мы не будем касаться непосредственного употребления пород, слагающих космические тела, и их атмосфер. В принципе вещества, из которых состоят космические тела, могут быть применены в любых из описанных здесь двигателях. Рассмотрим лишь способы бесконтактного использования макротел.
Наиболее сильно в космическом пространстве проявляется гравитационное взаимодействие. К сожалению, возможности его использования для ускорения космических аппаратов сильно ограниченны. Действительно, пролетая мимо космического тела, ракета будет разгоняться за счет его притяжения до тех пор, пока не пройдет точку минимального сближения. Далее начнется ее торможение, и суммарное изменение кинетической энергии ракеты будет равно нулю. Если бы после минимального сближения можно было бы заэкранировать силу тяготения или изменить ее знак на противоположный, то многие задачи космических полетов были бы легко решены. Но, увы, современная наука даже не знает, возможны ли вообще такие манипуляции с гравитационным полем.
Тем не менее в некоторых случаях гравитационным взаимодействием можно воспользоваться для сокращения бортового запаса массы. Это касается в первую очередь поворота плоскостей орбиты космических аппаратов. Например, при запуске геостационарного спутника с облетом Луны можно сократить расход рабочего тела на 10 % по сравнению с прямым запуском. Более" того, возможны двигательные системы, работающие за счет неоднородностей гравитационного поля, которые для перемещения полезного груза в поле тяжести вообще не нуждаются в бортовых запасах массы.
Принцип их работы основан на использовании так называемых приливных сил (рис. 14). Если две массы, связанные тросом, вращаются на орбите искусственного спутника Земли, то в целом такая система движется со скоростью, соответствующей орбите ее центра масс. В результате масса, наиболее удаленная от Земли, будет иметь большую скорость, чем нужно для ее равновесного движения, и поэтому на нее должна действовать избыточная центробежная сила. Для ближней к Земле массе, наоборот, скорость меньше равновесной и имеется избыточная гравитационная сила, равная и противоположно направленная сила, приложенной к верхней массе.
Эти силы называются приливными. Они натягивают трос, и, распуская трос с трением, мы заставим приливные силы совершать работу. Эта работа осуществляется за счет кинетической энергии системы, и в итоге центр тяжести ее будет переходить на более низкую орбиту. Подобным же образом приливные силы, действующие между планетами, вызывают их взаимное сближение. Например, океанские приливы, вызываемые Луной, в результате трения о поверхность Земли приводят к уменьшению расстояния между Луной и Землей.
И, наоборот, совершая работу против действия приливных сил, можно повысить орбиту центра тяжести системы. Для повторения цикла после полного сближения масс их нужно оттолкнуть при свободно распускающемся тросе. Но эффективность такой двигательной системы в околоземном пространстве очень мала.
Величина приливных сил равна произведению ускорения силы тяжести на орбите на отношение расстояния между массами к радиусу орбиты. На орбите высотой 350 км при расстоянии между массами 10 км она составляет 1,4 · 10–2 Н/кг, на геостанционарной орбите — 7 · 10–5 Н/кг. Работа, совершаемая за один цикл сближения, соответственно равна 7 · 10–2 и 3,5 · 10–4 Дж/кг. Чтобы перевести космический аппарат с орбиты высотой 350 км на геостационарную орбиту (35 880 км), потребуется около 108 циклов. Даже если допустить, что каждый цикл будет совершаться за 1 с, то на такое перемещение потребуется более 10 лет.
Рис. 14. Схема «гравитационного» двигателя (стрелками указано направление приливных сил): 1 — полезный груз, 2 — трос, 3 — устройства для намотки троса, 4 — Земля
Возможно, что когда человечество начнет создавать поселения в околоземном пространстве и потребуется транспортировка на высокие орбиты многих миллионов тонн грузов, такой тихоходный способ перемещения найдет свое применение. Преимущества его очевидны: полное отсутствие расходуемой массы и малые мощности двигательной системы.