Дорнбергер Вальтер
Шрифт:
– Не взялся бы утверждать это с полной уверенностью, но, скорее всего, в самом деле не стоит.
– В какой мере на сигналы влияет ионизация сопла?
– Доктор Вивег говорит, что по его измерениям плотность ионов составляла десять в шестой степени на кубический сантиметр.
– По-моему, не так уж и много. Но мои вопрос заключается в другом: какое воздействие оказывает ионизация на наши сигналы?
– Они заметно слабеют. С нашим старым передатчиком в пятьдесят мегагерц на дистанции отсечки топлива падение мощности составляет девяносто процентов. Тем не менее пока наши сигналы проходили благополучно.
– А что дает установка в пятьсот мегагерц, этот несчастный моторизованный гигантский "носорог" из Вюрцбурга?
– Падение не превышает десяти процентов.
– Но, доктор, использовать этого "носорога" просто невозможно. Это чудовище не может работать в активном режиме. Вам доводилось в последнее время встречаться с сотрудниками "Телефункена"? Им удалось добиться какого-нибудь прогресса с нашей установкой на сантиметровых волнах?
– Я видел у них много новинок.
– Мои дорогой доктор, я спрашиваю, удалось ли им добиться успехов?
– Я склонен считать…
– Понятно! Что ж, думаю, мне придется самому отправиться к ним. Какого черта! Что толку в "А-4", если разброс попаданий так и будет составлять восемнадцать километров? Если на "Телефункене" впрягутся как следует, то еще в этом году нам удастся посылать ракеты на расстояние двести сорок километров с разбросом меньше чем девятьсот метров. С этим результатом уже можно иметь дело. Так что вы хотели мне показать?
– Вам стоит познакомиться с нашими новыми имитаторами для проверки различных механизмов системы управления и сервомеханизмов, a также с имитатором траектории. Он показывает недопустимый уровень амплитуды колебаний ракеты в разреженном воздухе, когда после сорока трех секунд полета, почти к завершению времени горения, включается радарный луч.
– Вы уже не раз мне это рассказывали. У меня начинают мерзнуть ноги. Что по этому поводу думает доктор Херманн? Разве в разреженном воздухе не та же величина аэродинамического торможения?
– Поскольку к концу управляемого участка траектории плотность воздуха стремительно падает, уменьшается и сила таранного давления – как и величина естественных аэродинамических колебаний. Но энергия полета самой ракеты остается практически неизменной. Сигналы, поступающие по лучу, продолжают увеличивать амплитуду колебаний. Разброс, вместо того чтобы уменьшаться, возрастает.
– Тут вы не убедили меня, доктор. Вы не должны внезапно уводить ракету с прямого курса, а также пускать в ход луч радара вплотную ко времени отсечки топлива. Если ракета с самого начала полета выдерживает курс по лучу радара и малейшее отклонение от него тут же корректируется, большого размаха колебаний не должно быть.
– Я и не настаиваю на этом. Но во всяком случае, могу доказать, что данный эффект существует.
– Ну что ж, доктор, покажите, что у вас нового.
Большинство дискуссий со Штейнхофом проходили таким же образом. Сначала он, преисполненный оптимизма, называл самые фантастические цифры и даты поставок. Затем горький опыт вызывал у него разочарование. Он становился осторожен и даже чрезмерно. Но его способности не вызывали сомнений. Его отдел великолепно справлялся со своими обязанностями и за несколько лет своего существования, благодаря исключительно толковым сотрудникам, проделал просто блистательную работу.
Войдя в одну из многочисленных лабораторий, мы увидели ряд имитаторов различной конструкции. Обилие кабелей вело к подключенным электрическим "миксерам", в которых различные внешние и внутренние факторы воздействия, возникающие во время периода горения, сочетались и трансформировались в единственный сигнал, который и подавался на сервомеханизмы.
Перед создателями наших имитаторов была поставлена задача – заменить ими длительные эксперименты, которые проводились с собранной ракетой на дорогостоящих испытательных стендах. Имитаторы приходилось неоднократно переделывать и улучшать, пока наконец они не стали полностью соответствовать поставленным задачам. Вот какие факторы им предстояло исследовать – момент инерции, действие аэродинамических сил, торможение воздуха, работу стабилизаторов. В дополнение надо было снимать характеристики систем управления и контроля, увеличения "позиционного отклонения" и его производных. Под "позиционным отклонением" мы имели в виду угол отклонения от оси ракеты, определяемый гироскопом, и отклонение по горизонтали от линии луча, ведущего ракету.
Суммарный эффект всех этих факторов, некоторые из которых были довольно переменчивы, был теоретически исследован с помощью надежных расчетов. И их результаты теперь предстояло проверить в ходе практических лабораторных испытаний, чтобы установить влияние каждого фактора. В жизнь вошла имитационная техника. На первом этапе ее развития механика ракеты была представлена грузами и пружинами. Контрольная аппаратура была подлинная, та самая, что использовалась во время стартовых испытаний. На втором этапе, который Штейнхоф и демонстрировал мне сегодня, механические аналоги были частично заменены электрическими. Программное устройство регулировало изменения различных факторов – точно так же, как они меняются в реальном полете. Имитатор быстро и безошибочно фиксировал их влияние. Поведение ракеты при различных условиях полета, когда она получала различные сигналы, читалось на экранах измерительной аппаратуры и отражалось на лентах осциллографов.
Пока Штейнхоф и его инженеры объясняли мне их действие, я наблюдал за работой имитаторов, которые испытывали наш механизм управления. Вместо лопастей обыкновенных стабилизаторов, которыми управляли сервомеханизмы, были длинные стрелки, которые двигались по шкале. Я наглядно видел, какой чувствительностью обладал механизм управления. Отклонения и повороты стартового стола, практически незаметные для невооруженного глаза, не успев начаться, тут же "пресекались". Стоило только "ракете" на стартовом столе произвести несколько колебаний, как они тут же затухали, и "ракета" возобновляла движение, заданное гироскопом.