Шрифт:
— Охотясь на очковую змею, не забудьте сбить с неё очки, — напомнил Рикки-Тикки-Тави.
— И всегда носите их в футляре, — добавила Мартышка, — ведь больше они ни на что не годятся!
— Не заглядывайте в пасть крокодилу, — остерёг нас любопытный Слонёнок. — Как бы он не оставил вас с носом! И предлинным.
— Никогда не опаздывайте! — сказала Кошка, которая ходит сама по себе. — Вы рискуете прийти к шапочному разбору.
Это был своевременный совет, и мы поспешили в цирк.
В ЦИРКЕ
Что может быть лучше летнего цирка? Только зимний! Цирк любят все. Старики вспоминают здесь свою молодость. Молодые превращаются в детей. А дети, которых досрочно пытаются превратить во взрослых, забывают обо всём на свете и развлекаются, как им и положено.
На сей раз они получили возможность соединить приятное с полезным, посмотрев программу развлекательно-познавательную, к тому же с числовым уклоном. Не сомневаюсь: тут кое-кто из юных читателей недовольно поморщится. Возможно, это будет москвич. Возможно, ленинградец. Но уж наверняка не уроженец Энэмска!
Энэмские дети любят числа с рождения. И потому они страшно обрадовались, когда на манеж выбежали два клоуна в костюмах, сплошь размалёванных цифрами.
— Здравствуй, Пи! — на весь цирк закричал один.
— Здравствуй, Э! — закричал другой. — Что у тебя висит на руке?
— Не скажу! — заупрямился Пи и тут же проговорился: — Сумка.
— А что ты в ней прячешь?
— Не скажу, — опять заупрямился Пи и опять проговорился: — Корни.
— Какие корни? Еловые?
— Не угадал! — визгливо захохотал Пи.
— Дубовые?
— Опять не угадал! — снова захохотал Пи. — Квадратные и кубические.
— А что ты собираешься с ними делать?
— Извлекать!
— Откуда?
— Из сумки!
Тут он действительно извлёк из сумки чёрную табличку и очень крупно написал на ней мелом:
— Слушай, Э! — снова закричал он. — Сейчас я буду тебя экзаменовать. Вот тебе корень квадратный из ста шестидесяти девяти. Как ты будешь его извлекать?
— Надо подумать! — сказал Э и поскрёб в затылке.
— А вот и не надо! — возразил Пи. — Корни лучше всего извлекать носовым платком.
В руке у него появился большой красный платок с крупными белыми горохами, и он стёр им среднюю цифру в числе 169.
— Главное сделано, — заявил он. — Остаются пустяки. Извлекаем корень квадратный из единицы. Что получим?
— Единицу! — закричали со всех сторон.
— Правильно! — подтвердил Пи. — А теперь извлечём корень квадратный из девятки. Получим…
— Три! — опять закричали зрители.
— Цифры 1 и 3 образуют число 13. Вот вам и корень квадратный из ста шестидесяти девяти!
Публика дружно захлопала, а бедный Э, наоборот, ужасно расстроился.
— Не штука извлечь корень квадратный, — сказал он, — а ты вот попробуй кубический!
— Пожалуйста! — согласился Пи и написал на дощечке:
Потом он опять стёр платком, но уже две средние цифры, извлёк корень кубический из оставшейся единицы, затем из восьми и получил 12, что и есть корень кубический из тысячи семисот двадцати восьми.
Э после того заревел в голос и стал утирать нос платком Пи. А зрители снова захлопали, и громче всех — Главный терятель. Числовые фокусы — его страсть.
Девочке клоуны тоже понравились, и она спросила, откуда у них такие смешные имена. Я объяснил, что так в математике обозначают особые числа, которые, между прочим, тоже иррациональны. Одно из них для краткости записывают греческой буквой «пи» . Это число очень важное. Оно помогает нам вычислять длину окружности и приближённо равно трём целым и четырнадцати сотым (3,14). Число «э» обозначают маленьким латинским «е», и оно приближённо равно двум целым семидесяти двум сотым (2,72). Но девочке оно понадобится много позже, когда она познакомится с высшей математикой. А пока будет с неё и того, что обозначения «пи» и «э» ввёл великий швейцарский математик Леонард Эйлер, который долгие годы жил в России и был единомышленником великого Ломоносова.
Вслед за клоунами выступал жонглёр-мнемотехник. Он делал несколько дел сразу: танцевал на спине у бегущей лошади, жонглировал светящимися дисками и между прочим отгадывал степени натуральных чисел, задуманные зрителями.
Вы, конечно, помните, что в возведении в степень участвуют три числа. То, которое возводится в степень, называется основанием степени. То, что показывает, в какую степень возводится основание, называется показателем степени. А то, что получается в результате, просто степенью.