Шрифт:
Дейтерий добывают путем перегонки жидкого водорода, получаемого, например, на химических заводах попутно с производством аммиака. Технологический процесс ведется в температурах, приближающихся к холоду космических пространств. На одну тонну выработанного аммиака можно получить стакан тяжелой воды. Стоимость дейтерия как горючего уже сейчас составляет менее одного процента стоимости угля.
Легче всего осуществить управляемую термоядерную реакцию на смеси из равных частей дейтерия и трития. Однако трития в природе ничтожно мало. Тритий искусственно получают путем облучения металла лития нейтронами. Пока это — дорогое производство. Но советскими учеными предложен остроумный выход: ведь при работе термоядерных установок будет выделяться огромный поток нейтронов. А что, если окружить реактор оболочкой из лития? Тогда под влиянием нейтронной бомбардировки литий начнет расщепляться на тритий и гелий. В ходе работы реактор будет сам для себя готовить ядерное топливо. Более того, запасы трития будут при этом непрерывно возрастать.
Хитроумные приборы выставки, подступившие к океану, — это прототипы грядущих термоядерных реакторов. Одна из американских моделей называется «Перхэпсатрон», что в переводе значит «возможнотрон».
Можно сказать, что все экспонируемые приборы в какой-то мере «возможнотроны»; они с большей или меньшей убедительностью демонстрируют лишь принципиальную возможность построения в будущем термоядерного реактора. Они так же относятся к своему грядущему потомку, как старинный эолипил Герона к современной паровой турбине, как сегнерово колесо к современному гидравлическому двигателю, как магнитные подковки и катушки Фарадея к современному электрогенератору, как грозоотметчик Попова к современной радиостанции.
Поразительно принципиальное сходство приборов, построенных антиподами на разных концах земли, за семью замками лабораторий, в обстановке глубочайшей секретности. И наивно полагать, что ученым удалось разгадать секреты друг друга. Они просто пытались проникнуть в одну общую тайну — великую тайну природы. Они порознь вели единоборство с природой и держались единственно возможной тактики: разгадать законы природы, подчиниться этим законам и тем самым подчинить природу себе. Их конечные выводы получились едиными, как едины законы природы.
Теперь стало возможно проследить перипетии мировой изобретательской и исследовательской мысли по дороге на океан.
Грандиозные успехи атомной энергетики, опирающиеся на деление тяжелых ядер, стали возможны благодаря беззаветной работе ученых, бескорыстно изучающих сердце атома. И мы вправе сказать, что к первому этапу атомной энергетики человечество проникло через узкие дверцы микромира.
Ко второму этапу атомной энергетики, опирающемуся на слияние легких ядер, привели бескорыстные исследования звездного неба, отвлеченные достижения астрофизики, изучающей жизнь колоссальных космических тел Вселенной. Человечество идет к термоядерной энергетике сквозь широкие ворота макромира. В кулуарах конференции шутят, что идеи термоядерной энергетики буквально свалились с небес. И в этом еще одна разгадка их единства. Ведь над русскими, англичанами, американцами — одно и то же небо.
Термоядерные реакции потому и называются так, что происходят при очень высоких температурах. При таких температурах материя, вещество, образует первозданный хаос из мятущихся электронов и голых атомных ядер, с которых совлечены электронные оболочки. Из подобного материала построены солнце, звезды, туманности. Это состояние вещества называется плазмой.
Плазма очень подвижна и живет своей сложной, прихотливой жизнью. Электрические заряды привносят в ее движение свои склонности и антипатии, а течения, вихри и струи плазмы, обладают капризными свойствами намагниченных током проводников.
Поведением плазмы занимается теоретическая наука — магнитогидродинамика, младшая сестра аэрогидродинамики. Специалисты по магнитогидродинамике гордятся своей сложной наукой. Она шире объемлет мир, чем ее старшая сестра. Аэрогидродинамике подчиняются лишь нижняя часть атмосферы и четыре океана земного шара, а магнитогидродинамике— вся остальная Вселенная. Магнитогидродинамика это и есть тот теоретический мост, который объединяет Крабовидную туманность, затерянную в безднах неба, и прообраз термоядерного реактора на лабораторном стенде. Уравнения ее описывают анатомию мощного электрического разряда и кипение пламенного океана на поверхности солнца, «огненные валы» которого воспел еще Ломоносов. Она вооружает инженерную мысль возможностями небывалого величия и красоты. На протяжении многих тысячелетий истории материальной культуры люди строили свои орудия из организованной материи — камня, бронзы, железа, стекла. А теперь они могут создавать их и из первозданной материи — звездного хаоса, и человечество с надеждой взирает на этот гордый акт творения.
Магнитогидродинамика тренирует такую систему мышления, которая помогает искателям термоядерных реакторов преодолевать почти непостижимые трудности. Вот лишь одна из них.
Для того чтобы «второй огонь», принесенный современным Прометеем с небес на землю, смог охватить плазму, для того чтобы плазма загорелась негаснущим ядерным пламенем, необходимо достичь температуры в 50 миллионов градусов. (Заметим, что это минимальная цифра для смеси дейтерия с тритием, для чистого же дейтерия необходимы сотни миллионов градусов). Только при этих температурах ядра тяжелого водорода начнут метаться с такой бешеной скоростью, что смогут преодолеть могучие электрические силы взаимного отталкивания и будут во множестве сливаться в ядра гелия.
Перед создателями термоядерных реакторов возникает задача — построить топку, в которой могли бы протекать процессы при столь высокой температуре.
Как обезопасить стенки сосуда от жара плазмы? Но это не единственная забота. Оказывается, в довершение всего, стенки представляют для плазмы еще большую опасность, чем плазма для стенок. Вспомните, что вещество в сосуде очень разрежено. При таком разрежении даже при сверхвысоких температурах в плазме накапливается ничтожное количество тепла, немногим больше, чем нужно для того, чтобы вскипятить чашку чая. Если плазма чуть коснется стенок, она тут же охладится. Подсчитано, что достаточно одной булавочной головке металла испариться из стенки сосуда, чтобы охладить, загрязнить, «отравить» несколько железнодорожных цистерн плазмы. Мы уже знаем, что можно изолировать плазму от стенок. Магнитогидродинамика теоретически допускает, что с помощью электрических токов и магнитных полей можно в принципе построить из плазмы такое образование, которое повисло бы в центре сосуда хотя бы на некоторое время и за этот срок не касалось бы стенок. Роль термоизоляции в плазме могут играть незримые стены магнитного поля.