Шрифт:
Классифицировать задачи (не говоря уже о ситуациях) чрезвычайно трудно: суть задач скрыта за произвольным «словесным оформлением». Модели задач поддаются простой и четкой классификации. В основу этой классификации положена вепольная структура, исходной технической системы. Такой подход позволяет сразу разделить задачи на три типа: дан один элемент, даны два элемента, даны три (или более) элемента. Каждый тип делится на классы — в зависимости от того, какие именно элементы даны (вещества, поля), как они между собой связаны и можно ли их менять.
В приложении 2 приведена таблица основных классов моделей задач. Возьмем, например, задачу 23. В ее условии даны два элемента (тепловое поле и вещество), следовательно, задача относится ко второму типу. Поле и вещество связаны в задаче 23 двумя сопряженными действиями. если проволоку нагревать, она удлиняется. Одно действие полезно, другое вредно. Это задача класса 11.
Мы еще не раз обратимся к классификации моделей задач. Пока отметим только одно очень важное обстоятельство. Задачи первого типа (дан один элемент) почти всегда решаются достройкой веполя. Тут можно провести аналогию с химией. Галогены обладают разными свойствами, но есть некоторое общее свойство, довлеющее над всеми другими и обусловленное структурой внешней электронной оболочки атомов этих элементов: галогены стремятся получить недостающий электрон, достроить оболочку, сделать ее полной. Так обстоит дело и с моделями задач первого типа. Главное их свойство — стремление к достройке полного веполя. Задача 9 внешне мало похожа на задачу 6. Даже с вепольных позиций есть некоторая разница: в задаче 9 надо обнаруживать маленькие капельки жидкости, а в задаче 6 — менять свойства почвы (притом большого количества). Но обе задачи относятся к первому типу моделей (дан один элемент) и имеют сходные вепольные решения: для решения обеих задач надо ввести второе вещество и поле, управляющее первым веществом через второе.
Задачи третьего типа без особых затруднений переводятся в задачи первого и второго типа. Если, например, по условиям задачи дан веполь (т. е. три элемента), этот веполь можно рассматривать как один элемент (вещество) и соединять его по обычным правилам с другими веществами и полями.
Поэтому «классические» изобретательские задачи — это задачи второго типа. Для конфликта нужно столкновение двух противоборствующих тенденций, стремлений, свойств, требований. В сущности, такое столкновение есть и в задачах первого типа: второго элемента нет в условиях задачи, но он подразумевается. Скажем, в задаче 20 указан один элемент — крупинка алмаза. Второй элемент, который мог бы быть указан в условиях задачи — инструмент, обычно применяющийся в подобных случаях, например пинцет. Крупинки алмаза в данном случае слишком малы, нет смысла даже пытаться укладывать их пинцетом, поэтому второй элемент вынесен за пределы задачи.
ОСНОВНЫЕ МЕХАНИЗМЫ УСТРАНЕНИЯ ПРОТИВОРЕЧИЙ
В АРИЗ используются четыре механизма устранения технических противоречий:
1) переход от данной в модели задачи технической системы к идеальной системе путем формулирования идеального конечного результата (ИКР);
2) переход от ТП к ФП;
3) использование вепольных преобразований для устранения ФП;
4) применение системы операторов, в сконцентрированном виде отражающей информацию о наиболее эффективных способах преодоления ТП и ФП (списки типовых приемов, таблицы использования типовых приемов, таблицы и указатель применения физических эффектов).
В модели задачи описана техническая система (точнее, ее «больной» фрагмент) и присущее ей противоречие. Заранее неизвестно, как реально устранить это противоречие, но всегда есть возможность сформулировать идеальное решение, воображаемый конечный результат (ИКР). Смысл этой операции заключается в том, чтобы получить ориентир для перехода к сильным решениям. Идеальное решение, по самому определению, наиболее сильное из всех мыслимых и немыслимых решений (для данной модели задачи). Это как бы решение несуществующего шестого уровня. Тактика решения задачи с помощью ИКР состоит в том, чтобы «уцепиться» за этот единственный сверхсильный вариант и по возможности меньше от него отступать.
ИКР формулируют по простой схеме: один из элементов конфликтующей пары сам устраняет вредное (ненужное, лишнее) действие, сохраняя способность осуществлять основное действие. Идеальность решения обеспечивается тем, что нужный эффект достигается «даром», без использования каких бы то ни было средств. Например, для задачи 23 ИКР можно записать так: «Тепловое поле само предотвращает порчу проволоки, обеспечивая тем не менее требуемое тепловое удлинение». Что может быть идеальнее? Ничего не ввели, ничего не усложнили, но вредное действие теплового поля словно по волшебству исчезло, а полезное действие сохранилось… «Дикость», парадоксальность, возникшая уже при переходе к модели задачи, резко усиливается. Тепловое поле должно не только осуществлять несовместимые действия, но и делать это само — без всяких машин, механизмов и прочих устройств.
При обучении теории решения изобретательских задач особое внимание уделяется освоению понятий об идеальной машине (машины нет, но требуемое действие выполняется), идеальном способе (расхода энергии и времени нет, но требуемое действие выполняется, причем саморегулированно), идеальном веществе (вещества нет, но его функция выполняется).
Для обычного инженерного мышления характерна готовность «платить» за требуемое действие — машинами, расходом времени, энергии, вещества. Необходимость «платы» кажется очевидной, инженер озабочен лишь тем, чтобы «плата» не была чрезмерной и «расчет» был произведен «грамотно»: «Нужно бороться с теплопритоком. Что ж, придется рассчитать систему теплозащиты. Используем хорошую теплоизоляцию, например экранно-вакуумную. А если этого будет недостаточно, можно отвести избыток тепла, применив тепловые насосы…» Изобретательское мышление при работе по АРИЗ должно быть четко ориентировано на идеальное решение: «Есть вредный фактор, с которым надо бороться. Идеально, чтобы этот фактор исчез сам по себе. Пусть сам себя устраняет. Впрочем, его можно устранить, сложив с другим вредным фактором. Нет, пожалуй, самое идеальное — пусть вредный фактор начнет приносить пользу…»
Направленность на идеал отнюдь не означает отход от реальности решения. Во многих случаях идеальное решение полностью осуществляется. Скажем, идеальность машины обеспечивается тем, что ее функцию по совместительству начинает выполнять другая машина. Идеальность способа нередко достигается выполнением требуемого действия заранее, благодаря чему в нужный момент на это действие не приходится тратить ни времени, ни энергии.
Четкая нацеленность на идеал нужна не только при формулировке ИКР, но буквально на всех этапах решения задачи, при всех операциях по АРИЗ. Если, например, вепольный анализ подсказывает: надо ввести вещество, — следует не упускать из виду, что наилучшее вещество — это когда вещества нет, а его функция выполняется. Есть много эффективных способов вводить вещество, не вводя его (одно вещество поочередно выступает в двух видах, вещество вводится на время и т. д.).