Вход/Регистрация
Журнал «Компьютерра» № 22 от 12 июня 2007 года
вернуться

Журнал Компьютерра

Шрифт:

За ответом на некоторые медицинские вопросы английские биохимики обратились к секрету слезных желез. В слезах содержится ряд белков, причем 95% белкового набора приходится на лизоцим, лактоферрин и альбумин. В частности, лизоцим обладает способностью разрушать клеточную стенку бактерий и, таким образом, выполняет функции антибактериального барьера. Антибактериальными свойствами обладает и лактоферрин. Было бы логичным ожидать, что многие инфекционные заболевания, особенно глазные, будут вызывать изменения в белковом составе слез, что и было подтверждено британцами на практике. Высушенная капля слезной жидкости анализируется с помощью спектроскопии комбинационного рассеяния (другое название – рамановская спектроскопия). Данный метод дает информацию как о качественном составе белковой смеси, так и о количестве каждого белка. Новизна метода во многом именно в «индивидуальном» подходе к каждому белку, а для анализа достаточно образца слез объемом 1,5 микролитра.

Сейчас ученые исследуют возможное влияние небелковых примесей и других загрязнений, содержащихся в слезах, на результаты анализа. Кроме того, пока не совсем ясен круг заболеваний, которые можно диагностировать таким путем: будет ли он ограничен только глазными инфекциями или же расширен и на другие заболевания, в том числе неинфекционного характера. Если технология окажется эффективной и востребованной, то, скорее всего, придется разработать и новый медицинский прибор, специально предназначенный для анализа слез, которых в стенах больниц предостаточно. ЕГ

Бриллиантовый бит

Важные результаты, обещающие сделать реальными квантовые вычисления при комнатной температуре, получили физики из Гарвардского университета. Ученым удалось реализовать кубит, оперируя спином ядра атома изотопа углерода-13 в кристаллической решетке алмаза и продемонстрировать его великолепные характеристики.

Как известно, главная проблема на пути создания квантовых компьютеров в том, что нежная квантовая информация быстро разрушается тепловым шумом физического окружения. В лучшем случае информацию удается сохранять несколько тысячных долей секунды, а этого времени слишком мало, чтобы выполнять серьезные вычисления. Чтобы уменьшить влияние тепловых шумов, кубиты охлаждают до низких температур и стараются как можно лучше изолировать от окружения. Но необходимость охлаждения резко осложняет практическое использование квантовых вычислений. А если кубиты как следует изолировать, то как же потом ими управлять в процессе вычислений? И эта дилемма создает замкнутый круг, из которого очень непросто найти приемлемый выход.

Но, тем не менее, одну из хитрых лазеек удалось отыскать в Гарварде. Ученые работали в этом направлении уже несколько лет и, наконец, их труды увенчались успехом. Для реализации кубита был выбран спин ядра атома изотопа углерода-13 в кристаллической решетке алмаза, которая состоит из ядер обычного углерода-12. Тяжелое ядро атома слабо взаимодействует со своим окружением, и квантовое состояние такого кубита очень стабильно и при комнатной температуре. Оно может сохраняться целую секунду, что на несколько порядков больше обычных параметров. Но как же им манипулировать и как считывать с него информацию? В обычных реализациях кубитов с помощью ядерного магнитного резонанса для этого требуется много миллиардов ядер. Но здесь рядом с атомом углерода-13 ученые поместили примесь – атом азота с одним дополнительным, по сравнению с углеродом, электроном. Спины ядра и рядом расположенного лишнего электрона оказываются тесно связаны и могут обмениваться своими квантовыми состояниями при подходящем внешнем воздействии. Спином легкого электрона нетрудно управлять с помощью электромагнитного поля оптической и радиочастоты. И в то же время ядро и электрон можно надежно изолировать друг от друга, превратив ядро в ячейку квантовой памяти, и даже продолжать при этом измерять состояние электрона.

Авторам удалось продемонстрировать, что несколько таких кубит можно оптическими методами заставить взаимодействовать, то есть «запутать» друг с другом, наращивая вычислительную мощь квантовой ячейки. Пока нет данных, позволяющих сказать, сколько всего алмазных кубит удастся одновременно реализовать при комнатной температуре и как они будут выглядеть по сравнению с рекордными результатами при низкой температуре, но прогнозы авторов весьма оптимистичны. ГА

Черные ракеты

Удивительные предсказания о последствиях слияния массивных черных дыр удалось сделать недавно сразу нескольким независимым научным группам астрофизиков. Благодаря новым компьютерным расчетам показано, что черные дыры могут «выстреливаться» из столкнувшихся галактик с гигантской скоростью до четырех тысяч километров в секунду.

Согласно современным астрономическим представлениям, в центре галактик обычно находятся массивные черные дыры. А что произойдет, если две галактики, блуждающие во вселенной, столкнутся так, что их центральные черные дыры сольются? Теория предсказывает, что в этой ужасной катастрофе пространство и время могут искривиться так сильно, что во вселенную выплеснется мощнейший импульс гравитационных волн, которые, однако, и волнами назвать трудно. За ними закрепился термин гравитационное излучение. Каким будет это гравитационное излучение, зависит от масс столкнувшихся черных дыр, их взаимных скоростей и от того, как они вращались до столкновения. Иногда это гравитационное излучение может сконцентрироваться в одном направлении, и в этом случае слившиеся дыры получат мощный толчок в противоположную сторону.

Рассчитать процесс слияния черных дыр ученые пытаются, начиная с шестидесятых годов. Однако долгое время сложность нелинейных уравнений общей теории относительности не позволяла сделать достаточно подробные трехмерные модели. И лишь за последние пару лет новые вычислительные методы и возросшая мощь суперкомпьютеров помогли сдвинуться с мертвой точки.

Сначала сразу несколько научных групп независимо пришли к выводу, что толчок будет самым сильным, если столкнутся черные дыры с примерно одинаковой массой, которые быстро вращаются в противоположном направлении вокруг своих осей, перпендикулярных плоскости их взаимного вращения. В этом случае слившаяся черная дыра может достичь скорости в пятьсот километров в секунду и останется в своей галактике. Однако позже астрофизики из Рочестерского технологического института в штате Нью-Йорк предположили, что толчок будет даже сильнее, если оси вращения дыр будут параллельны, а не перпендикулярны плоскости их вращения. Проверяя эту гипотезу, астрофизики из Йенского университета в Германии получили в расчетах скорость более 2500 км/с. А авторы гипотезы независимо вычислили, что в случае быстрого вращения дыр и оптимальных углов скорость «выстрела» может достичь 4000 км/с.

Это в корне меняет дело. Таких скоростей уже достаточно, чтобы дыра вылетела из своей галактики и отправилась в разрушительное путешествие по вселенной, поглощая все на своем пути. Хуже того, этот массивный снаряд невидим. Лишь в галактиках некоторых типов с большим количеством межзвездного газа этот газ будет захвачен черной дырой и, падая на нее, образует светящийся диск, в котором молекулы разогнаны почти до скорости света. Согласно оценкам, это свечение будет наблюдаться около 10 млн. лет, пока весь газ не будет «съеден» дырой, которая за это время пролетит примерно треть характерного галактического диаметра.

  • Читать дальше
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: