Шрифт:
– В горнострелковом полку?
– Так точно, господин доктор!
– Недавно ушли в отставку?
– Так точно!
– Были сержантом?
– Так точно! – лихо ответил больной.
– Стояли на Барбадосе?
– Так точно, господин доктор!
Студенты, присутствовавшие при этом диалоге, изумленно смотрели на профессора. Белл объяснил, насколько просты и логичны его выводы.
Этот человек, проявив при входе в кабинет вежливость и учтивость, все же не снял шляпу. Сказалась армейская привычка. Если бы пациент был в отставке длительное время, то давно усвоил бы гражданские манеры. В осанке властность, по национальности он явно шотландец, а это говорит за то, что он был командиром. Что касается пребывания на Барбадосе, то пришедший болеет элефантизмом (слоновостью) – такое заболевание распространено среди жителей тех мест.
Здесь дедуктивное рассуждение чрезвычайно сокращено. Опущены, в частности, все общие утверждения, без которых дедукция была бы невозможной.
Шерлок Холмс сделался очень популярным персонажем. Появились даже анекдоты о нем и о его создателе.
К примеру, в Риме Конан Дойл берет извозчика, и тот говорит: «А, господин Дойл, приветствую вас после вашего путешествия в Константинополь и в Милан!» «Как мог ты узнать, откуда я приехал?» – удивился шерлокхолмсовской проницательности Конан Дойл. «По наклейкам на вашем чемодане», – хитро улыбнулся кучер.
Это еще одна дедукция, очень сокращенная и простая.
Дедуктивная аргументация представляет собой выведение обосновываемого положения из иных, ранее принятых положений. Если выдвинутое положение удается логически (дедуктивно) вывести из уже установленных положений, это означает, что оно приемлемо в той же мере, что и эти положения. Обоснование одних утверждений путем ссылки на истинность или приемлемость других утверждений – не единственная функция, выполняемая дедукцией в процессах аргументации. Дедуктивное рассуждение служит также для верификации (косвенного подтверждения) утверждений: из проверяемого положения дедуктивно выводятся его эмпирические следствия; подтверждение этих следствий оценивается как индуктивный довод в пользу исходного положения. Дедуктивное рассуждение используется также для фальсификации утверждений путем показа того, что вытекающие из них следствия являются ложными. Не достигшая успеха фальсификация представляет собой ослабленный вариант верификации: неудача в опровержении эмпирических следствий проверяемой гипотезы является аргументом, хотя и весьма слабым, в поддержку этой гипотезы. И наконец, дедукция используется для систематизации теории или системы знания, прослеживания логических связей, входящих в нее утверждений, построения объяснений и пониманий, опирающихся на общие принципы, предлагаемые теорией. Прояснение логической структуры теории, укрепление ее эмпирической базы и выявление ее общих предпосылок является важным вкладом в обоснование входящих в нее утверждений.
Дедуктивная аргументация является универсальной, применимой во всех областях знания и в любой аудитории. «И если блаженство есть не что иное, как жизнь вечная, – пишет средневековый философ И.С.Эриугена, – а жизнь вечная – это познание истины, то блаженство – это не что иное, как познание истины». Это теологическое рассуждение представляет собой дедуктивное умозаключение, а именно силлогизм.
Удельный вес дедуктивной аргументации в разных областях знания существенно различен. Она очень широко применяется в математике и математической физике и только эпизодически в истории или эстетике. Имея в виду сферу приложения дедукции, Аристотель писал: «Не следует требовать от оратора научных доказательств, точно так же, как от математика не следует требовать эмоционального убеждения». Дедуктивная аргументация является очень сильным средством и, как всякое такое средство, должна использоваться узконаправленно. Попытка строить аргументацию в форме дедукции в тех областях или в той аудитории, которые для этого не годятся, приводит к поверхностным рассуждениям, способным создать только иллюзию убедительности.
В зависимости от того, насколько широко используется дедуктивная аргументация, все науки принято делить на дедуктивные и индуктивные. В первых используется по преимуществу или даже единственно дедуктивная аргументация. Во вторых такая аргументация играет лишь заведомо вспомогательную роль, а на первом месте стоит эмпирическая аргументация, имеющая индуктивный, вероятностный характер. Типично дедуктивной наукой считается математика, образцом индуктивных наук являются естественные науки. Однако деление наук на дедуктивные и индуктивные, широко распространенное еще в начале этого века, сейчас во многом утратило свое значение. Оно ориентировано на науку, рассматриваемую в статике, как систему надежно и окончательно установленных истин.
Понятие дедукции является общеметодологическим понятием. В логике ему соответствует понятие доказательства.
Доказательство – это рассуждение, устанавливающее истинность какого-либо утверждения путем приведения других утверждений, истинность которых уже не вызывает сомнений.
В доказательстве различаются тезис – утверждение, которое нужно доказать, и основание, или аргументы, – те утверждения, с помощью которых доказывается тезис. Например, утверждение «Платина проводит электрический ток» можно доказать с помощью следующих истинных утверждений: «Платина – металл» и «Все металлы проводят электрический ток».
Понятие доказательства – одно из центральных в логике и математике, но оно не имеет однозначного определения, применимого во всех случаях и в любых научных теориях.
Логика не претендует на полное раскрытие интуитивного, или «наивного», понятия доказательства. Доказательства образуют довольно расплывчатую совокупность, которую невозможно охватить одним универсальным определением. В логике принято говорить не о доказуемости вообще, а о доказуемости в рамках данной конкретной системы или теории. При этом допускается существование разных понятий доказательства, относящихся к разным системам. Например, доказательство в интуиционистской логике и опирающейся на нее математике существенно отличается от доказательства в классической логике и основывающейся на ней математике. В классическом доказательстве можно использовать, в частности, закон исключенного третьего, закон (снятия) двойного отрицания и ряд других логических законов, отсутствующих в интуиционистской логике.
По способу проведения доказательства делятся на два вида. При прямом доказательстве задача состоит в том, чтобы найти такие убедительные аргументы, из которых логически вытекает тезис. Косвенное доказательство устанавливает справедливость тезиса тем, что вскрывает ошибочность противопоставляемого ему допущения, антитезиса.
Например, нужно доказать, что сумма углов четырехугольника равна 360°. Из каких утверждений можно было бы вывести этот тезис? Отмечаем, что диагональ делит четырехугольник на два треугольника. Значит, сумма его углов равна сумме углов двух треугольников. Известно, что сумма углов треугольника составляет 180°. Из этих положений выводим, что сумма углов четырехугольника равна 360°. Еще пример. Нужно доказать, что космические корабли подчиняются действию законов космической механики. Известно, что эти законы универсальны: им подчиняются все тела в любых точках космического пространства. Очевидно также, что космический корабль есть космическое тело. Отметив это, строим соответствующее дедуктивное умозаключение. Оно является прямым доказательством рассматриваемого утверждения.