Вход/Регистрация
Структура научных революций
вернуться

Кун Томас

Шрифт:

Эти обобщения внешне напоминают законы природы, но их функция, как правило, не ограничивается этим для членов научной группы. Но иногда они выступают как законы, например закон Джоуля — Ленца: H = R I2. Когда этот закон был открыт, члены научного сообщества уже знали, что означают H, R и I, и это обобщение просто сообщило им о поведении теплоты, тока и сопротивления нечто такое, чего они не знали раньше. Однако, как показывает всё обсуждение вопроса в книге, более часто символические обобщения выполняют в то же время вторую функцию, которая обычно резко отделяется от первой исследователями в области философии науки. Подобно законам f = ma или H = R I2 эти обобщения функционируют не только в роли законов, но и в роли определений некоторых символов, которые они содержат. Более того, соотношение между нераздельно связанными способностями установления законов и дефинирования изменяется с течением времени. Эти проблемы заслуживают более детального анализа, поскольку природа предписаний, вытекающих из закона, значительно отличается от природы предписаний, основывающихся на определении. Законы часто допускают частичные исправления в отличие от определений, которые, будучи тавтологиями, не позволяют подобных поправок. Например, одно из требований, вытекающих из закона Ома, состояло в том, чтобы заново определить как понятие «ток», так и понятие «сопротивление». Если бы эти термины употреблялись в своём прежнем смысле, закон Ома был бы неверен. Именно поэтому он встретил столь сильные возражения в отличие, скажем, от того, как был принят закон Джоуля — Ленца [170] . По всей вероятности, это типичная ситуация. Я в настоящее время даже подозреваю, что все революции, помимо всего прочего, влекут за собой отказ от обобщений, сила которых покоилась раньше в какой-то степени на тавтологиях. Показал ли Эйнштейн, что одновременность относительна, или он изменил само понятие одновременности? Разве те, кому казалась парадоксальной фраза «относительность одновременности», просто заблуждались?

170

Описание этого эпизода в его основных моментах см.: Т. M Brown. Electric Current in Early Nineteenth-Century French Physics. — «Historical Studies in the Physical Sciences», I, 1969, p. 61—103; M. Sсhagrin. Resistance to Ohm's Law. — «American Journal of Physics», XXI, 1963, p. 536—547.

Рассмотрим теперь второй тип компонентов, составляющих дисциплинарную матрицу. Об этом типе многое было сказано в моём основном тексте. Это такие составляющие матрицы, которые я называю «метафизическими парадигмами» или «метафизическими частями парадигм». Я здесь имею в виду общепризнанные предписания, такие, как: теплота представляет собой кинетическую энергию частей, составляющих тело; все воспринимаемые нами явления существуют благодаря взаимодействию в пустоте качественно однородных атомов, или, наоборот, благодаря силе, действующей на материю, или благодаря действию полей. Если бы мне пришлось переписать теперь книгу заново, я бы изобразил такие предписания, как убеждения в специфических моделях, и расширил бы категориальные модели настолько, чтобы они включали также более или менее эвристические варианты: электрическую цепь можно было бы рассматривать как своего рода гидродинамическую систему, находящуюся в устойчивом состоянии; поведение молекул газа можно было бы сопоставить с хаотическим движением маленьких упругих биллиардных шариков. Хотя сила предписаний научной группы меняется вдоль спектра концептуальных моделей, начиная от эвристических и кончая онтологическими моделями — а отсюда, между прочим, вытекает ряд нетривиальных следствий, — все модели имеют тем не менее сходные функции. Помимо всего прочего, они снабжают научную группу предпочтительными и допустимыми аналогиями и метафорами. Таким образом, они помогают определить, что должно быть принято в качестве решения головоломки и в качестве объяснения. И, наоборот, они позволяют уточнить перечень нерешённых головоломок и способствуют в оценке значимости каждой из них. Заметим, однако, что члены научных сообществ вовсе не обязаны соглашаться со своими коллегами по поводу даже эвристических моделей, хотя обычно они и склонны к этому. Я уже указывал, что для того, чтобы входить в сообщество химиков в течение первой половины XIX столетия, не было необходимости верить в существование атомов.

В качестве третьего вида элементов дисциплинарной матрицы я рассматриваю ценности. Обычно они оказываются принятыми среди различных сообществ более широко, чем символические обобщения или концептуальные модели. И чувство единства в сообществе учёных-естественников возникает во многом именно благодаря общности ценностей. Хотя они функционируют постоянно, их особенная важность обнаруживается тогда, когда члены того или иного научного сообщества должны выявить кризис или позднее выбрать один из несовместимых путей исследования в их области науки. Вероятно, наиболее глубоко укоренившиеся ценности касаются предсказаний: они должны быть точными; количественные предсказания должны быть предпочтительнее по сравнению с качественными; в любом случае следует постоянно заботиться в пределах данной области науки о соблюдении допустимого предела ошибки и т. д. Однако существуют и такие ценности, которые используются для вынесения решения в отношении целых теорий: прежде всего, и это самое существенное, они должны позволять формулировать и решать головоломки. Причём по возможности эти ценности должны быть простыми, не самопротиворечивыми и правдоподобными, то есть совместимыми с другими, параллельно и независимо развитыми теориями. (Я теперь думаю, что недостаток внимания к таким ценностям, как внутренняя и внешняя последовательность в рассмотрении источников кризиса и факторов в выборе теории, представлял собой слабость моего основного текста.) Существуют точно так же другие виды ценностей, например точка зрения, что наука должна (или не должна) быть полезной для общества, однако из предшествующего изложения уже ясно, чтó я имею в виду.

Об одном аспекте общепринятых ценностей следует, однако, упомянуть особо. В значительно большей степени, чем другие виды компонентов дисциплинарной матрицы, ценности могут быть общими для людей, которые в то же время применяют их по-разному. Суждения о точности, хотя и не полностью, но по крайней мере относительно, стабильны для различных моментов времени и для различных членов конкретной научной группы. Но суждения о простоте, логичности, вероятности и т. п. часто значительно расходятся у различных лиц. То, что было для Эйнштейна совершенно неуместно в старой квантовой теории, что делало невозможным развитие нормальной науки, — всё это для Бора и других физиков казалось трудностью, на разрешение которой можно было надеяться, полагаясь на средства самой нормальной науки. Что ещё более важно в тех ситуациях, в которых следовало бы прибегнуть к ценностям, так это то, что различные ценности, использованные изолированно от других, часто обычно предопределяли и различный выбор средств для преодоления трудностей. Одна теория может быть более точной, но менее последовательной или правдоподобной, чем другая. Примером этого может служить опять-таки старая квантовая теория. Короче говоря, хотя ценности бывают широко признанными среди учёных и хотя обязательства по отношению к ним определяют и глубину и конструктивность науки, тем не менее конкретное применение ценностей иногда сильно зависит от особенностей личности и биографий, которые отличают друг от друга членов научной группы.

Для многих читателей предшествующих разделов эта характеристика воздействия общепринятых ценностей показалась явным признаком слабости моей позиции. Поскольку я настаиваю на том, что общепринятые ценности сами по себе ещё не являются достаточными для того, чтобы обеспечивать полное согласие относительно таких вопросов, как выбор между конкурирующими теориями или различение обычной аномалии и аномалии, таящей в себе начало кризиса, то неожиданно для самого себя я был обвинён в прославлении субъективности и даже иррациональности [171] . Но эта реакция игнорирует две характеристики, на которые указывают ценностные суждения в любой области. Во-первых, общепринятые ценности могут быть важными детерминантами поведения группы даже в том случае, если её члены не все применяют их одним и тем же способом. (Если бы это было не так, то не могло бы быть никаких специальных философских проблем, составляющих предмет аксиологии или эстетики.) Не все люди рисовали одинаково в течение того периода времени, когда точность изображения была главной ценностью, но модель развития изобразительных искусств резко изменилась с тех пор, как художники отказались от подобной ценности [172] . Вообразите только, что произошло бы в науках, если бы согласованность перестала бы считаться первичной ценностью. Во-вторых, индивидуальная модификация в применении общепринятых ценностей может играть весьма существенную роль в науке. Вопросы, в которых применяются ценности, постоянно являются вопросами, для решения которых требуется пойти на риск. Большинство аномалий разрешается нормальными средствами; также и большинство заявок на новые теории оказываются беспочвенными. Если бы все члены сообщества рассматривали каждую аномалию как источник кризиса или принимали с полной готовностью каждую новую теорию, выдвинутую коллегами, наука перестала бы существовать. С другой стороны, если бы никто не откликался на возникновение аномалий или на новоиспечённые теории в высшей степени рискованными ходами, то в науке было бы значительно меньше революций или их не было бы вообще. В подобных ситуациях обращение к общепринятым ценностям скорее, чем к общепринятым правилам, регулирующим индивидуальный выбор, может быть тем приёмом, с помощью которого сообщество распределяет риск между исследователями и гарантирует таким образом на долгое время успех своему научному предприятию.

171

См. особенно: D. Shapere. Meaning and Scientific Change, in: «Mind and Cosmos: Essays in Contemporary Science and Philosophy». The University of Pittsburgh Series in the Philosophy of Science, III. Pittsburgh, 1966, p. 41—85; I. Scheffler. Science and Subjectivity. N. Y., 1967, а также статьи К. Поппера и Лакатоша в книге «Growth of Knowledge».

172

См. обсуждение в начале XIII раздела.

Обратимся теперь к четвёртому виду элементов дисциплинарной матрицы, который будет последним, рассмотренным здесь, хотя, вообще говоря, существуют и другие виды. Для этого вида элементов термин «парадигма» был бы полностью уместным как лингвистически, так и автобиографически. Именно этот компонент общепринятых групповых предписаний в первую очередь привёл меня к выбору данного слова. Тем не менее, поскольку этот термин получил свою собственную жизнь, я буду заменять здесь его словом «образцы». Под этим видом элементов я подразумеваю прежде всего конкретное решение проблемы, с которым сталкиваются студенты с самого начала своей научной подготовки в лабораториях, на экзаменах или в конце глав используемых ими учебных пособий. Эти признанные примеры должны быть, однако, дополнены по крайней мере некоторыми техническими решениями проблем, взятыми из периодической литературы, с которыми сталкиваются учёные в процессе их послеуниверситетской самостоятельной исследовательской работы и которые служат для них также примером того, как «делается» наука. Различия между системами «образцов» в большей степени, чем другие виды элементов, составляющих дисциплинарную матрицу, определяют тонкую структуру научного знания. Все физики, например, начинают с изучения одних и тех же образцов: задачи — наклонная плоскость, конический маятник, кеплеровские орбиты; инструменты — верньер, калориметр, мостик Уитстона. Однако по мере того, как продолжается их обучение, символические обобщения, на которые они опираются, иллюстрируются всё более различающимися образцами. Хотя специалистам в области физики твёрдого тела и специалистам по теории полей известно уравнение Шрёдингера, но общими для обеих групп являются лишь его более элементарные приложения.

3. Парадигмы как общепризнанные образцы

Парадигма как общепризнанный образец составляет центральный элемент того, что я теперь считаю самым новым и в наименьшей степени понятым аспектом данной книги. Поэтому именно образцы требуют здесь большего внимания, чем другие компоненты дисциплинарной матрицы. Философы науки обычно не обсуждали проблемы, с которыми сталкивается студент в лабораториях или при усвоении учебного материала, всё это считалось лишь практической работой в процессе применения того, что студент уже знает. Он не может, говорили философы науки, решить никакой проблемы вообще, не изучив перед этим теорию и некоторые правила её приложения. Научное знание воплощается в теории и правилах; проблемы ставятся таким образом, чтобы обеспечить лёгкость в применении этих правил. Я попытался доказать тем не менее, что такое ограничение познавательного содержания науки ошибочно. После того как студент уже решил множество задач, в дальнейшем он может лишь усовершенствоваться в своём навыке. Но с самого начала и ещё некоторое время спустя решение задач представляет собой способ изучения закономерности явлений природы. В отсутствие таких образцов законы и теории, которые он предварительно выучил, имели бы бедное эмпирическое содержание.

Чтобы показать, что я имею в виду, я позволю себе кратко вернуться к символическим обобщениям. Одним из широко признанных примеров является второй закон Ньютона, обычно выражаемый формулой f = ma. Социолог или, скажем, лингвист, которые обнаружат, что соответствующее выражение сформулировано в аподиктической форме и принято всеми членами данного научного сообщества, не поймут без многих дополнительных исследований большую часть того, что означают выражения или термины в этой формуле, и то, как учёные сообщества соотносят это выражение с природой. В самом деле, тот факт, что они принимают его без возражений и используют его как средство, посредством которого вводятся логические и математические операции, ещё отнюдь не означает сам по себе, что они соглашаются по таким вопросам, как значение и применение этих понятий. Конечно, они согласны по большей части этих вопросов; если бы это было не так, это сразу бы сказалось на процессе научного общения. Но спрашивается, с какими целями и применением каких средств они достигли этого согласия. Каким образом научились они, столкнувшись с данной экспериментальной ситуацией, подбирать соответствующие силы, массы и ускорения?

  • Читать дальше
  • 1
  • ...
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: