Вход/Регистрация
Лекции
вернуться

Тесла Никола

Шрифт:

Нет сомнения, что общее мнение таково, что нет никакой возможности получить такие частоты, которые позволят — при допущении того, что некоторые из высказанных взглядов верны — прийти хотя бы к некоторым результатам из тех, что я только что обрисовал как возможные. В ходе исследований, наблюдая за этими явлениями, я пришел к убеждению, что эти частоты могут быть значительно ниже расчетных. В пламени мы вызываем небольшие колебания, заставляя молекулы или атомы сталкиваться. Но каков коэффициент этих столкновений и вызываемых вибраций? Конечно, он будет меньше коэффициента ударов колокола и звуковых вибраций или коэффициента разрядов и колебаний конденсатора. Мы можем заставить молекулы газа сталкиваться при помощи переменных электрических импульсов высокой частоты; также мы можем инициировать процесс в пламени; а из опытов с частотами, которые мы можем в настоящее время получать, я думаю, можно получить результат с импульсами, которые можно передать по проводу.

Рассуждая подобным образом, мне показалось интересным продемонстрировать твердость вибрирующего газового столба. Хотя с такой низкой частотой, как 10 000 колебаний в секунду, которую я без труда сумел получить от специально созданного генератора, задача сначала выглядела безнадежной, я всё же провел ряд опытов. Опыты с воздухом при обычном давлении не дали результатов, но когда я немного разредил воздух, мне кажется, получил несомненное опытное подтверждение искомого свойства. Так как такой результат может привести умелых экспериментаторов к важным выводам, я опишу один из опытов.

Хорошо известно, что когда из трубки немного откачан воздух, разряд может пройти в форме тонкой светящейся нити. Когда он вызывается током низкой частоты, полученным от катушки, работающей как обычно, эта нить инертна. Если поднести к ней магнит, то ближайшая ее часть притягивается или отталкивается, в зависимости от того, как направлены силовые линии магнита. Мне пришла мысль, что если такую нить получить от тока высокой частоты, то она должна быть более или менее твердой, а так как это можно увидеть, то можно и изучить. В соответствии с этим я приготовил трубку диаметром 1 дюйм и длиной 1 метр с покрытием на обоих концах. В трубке был создан вакуум до такой степени, что при небольшой нагрузке можно было получить нитевидный разряд. Надо сказать, что общий вид трубки и степень вакуумирования отличаются от того, какими они бывают при работе с обычными низкочастотными токами. Так как предпочтительнее работать с одним выводом, приготовленная трубка была подвешена на проводе, соединенном с одним выводом катушки через жестяное покрытие, к нижнему концу с покрытием иногда присоединялась изолированная пластина. Когда образовывалась нить, она тянулась через верхнюю часть трубки и терялась внизу. Если она обладала твердостью, то выглядела не как эластичный шнур, натянутый между двумя опорами, а как шнур, подвешенный на опоре с небольшим грузом на нижнем конце. Когда полюс магнита подносили к верхнему концу светящейся нити, она в этом месте меняла положение под магнитным или электростатическим воздействием; когда раздражитель быстро убирали, получался аналогичный результат, как будто подвешенный шнур оттянули, а потом быстро отпустили рядом с точкой подвешивания. При этом светящаяся нить начинала вибрировать и на ней образовывались два видимых и один неотчетливый узел. Вибрации продолжались полных восемь минут, постепенно затухая. Скорость колебаний часто ощутимо менялась, и можно было заметить электростатическое воздействие стекла на колеблющуюся нить; но было ясно, что электростатика не являлась причиной колебаний, ибо нить обычно была стабильна, а иногда колебания вызывались быстрым приближением пальца к верхней части трубки.

При помощи магнита нить можно было разбить на две части и обе вибрировали. Поднеся руку к нижней части трубки или к изолированной пластине можно было ускорить колебания; это можно было сделать, насколько я заметил, увеличив частоту и потенциал. Так, увеличение частоты или прохождение более сильного разряда той же частоты, соответствовало натяжению шнура. Я не получил опытного подтверждения при разрядах конденсатора. Световая полоса, возбуждаемая в трубке периодическими разрядами лейденской банки, должна обладать твердостью, и если ее деформировать и внезапно отпустить, должна вибрировать. Но, вероятно, количество вибрирующего вещества было настолько мало, что, несмотря на крайне высокую скорость, инерция не могла проявиться. Кроме того, наблюдение в таких случаях очень трудно производить по причине собственных колебаний.

Демонстрация того факта, который всё еще нуждается в экспериментальном подтверждении, что вибрирующий газовый столб имеет упругость, может сильно изменить взгляды мыслителей. Когда можно заметить это свойство при низких частотах и незначительном потенциале, то как же будет вести себя газообразная среда под воздействием огромного электростатического напряжения, которое может иметь место в межзвездном пространстве, и которое может колебаться с непостижимой скоростью? Существование такой электростатической, ритмично колеблющейся силы — электростатического поля — показало бы возможный путь формирования твердых веществ из ультрагазообразного правещества, а также как поперечные и другие типы колебаний могут передаваться сквозь газообразную среду, наполняющую всю Вселенную. Тогда эфир может быть настоящей жидкостью, лишенной упругости и находящейся в состоянии покоя, причем это необходимое звено в цепи взаимодействия. Что определяет упругость тела? Это должны быть скорость и количество движущегося вещества. В газах скорость может быть значительной, но плотность крайне мала; в жидкости скорость скорее всего мала, хотя плотность может быть значительной; и в обоих случаях инерционное сопротивление, оказываемое смещению, практически равно нулю. Но поместите столб газа (или жидкости) в напряженное, часто колеблющееся электростатическое поле, и инерционное сопротивление не заставит себя долго ждать. Тело может более или менее свободно двигаться сквозь вибрирующую массу, но в целом она будет упругой.

Есть тема, которой я должен коснуться в связи с этими опытами: высокий вакуум. Это предмет не только очень интересный, но и полезный, так как его изучение может привести к результатам огромной важности. В потребительских устройствах, таких, как лампы накаливания, которые питаются от обычных систем распределения, более высокая степень вакуумирования не принесет большой пользы. В таком случае вся нагрузка ложится на нить, а газ почти не причем; усовершенствование, следовательно, будет ничтожным. Но когда мы начинаем использовать очень высокие частоты и потенциалы, действие газа становится очень важным, и вакуум серьезно изменяет результаты. До тех пор, пока применялись обычные, даже очень большие катушки, изучение предмета было ограничено, так как именно в тот момент, когда это стало наиболее интересным, изучение прекратилось по причине того, что достигнут «неударный» вакуум. Но в настоящее время мы можем получить от разрядной катушки потенциалы гораздо более высокие, чем были способны дать самые большие катушки, и, что еще более важно, мы можем заставить потенциал меняться с огромной скоростью. Оба эти достижения позволяют нам пропускать световые разряды через вакуум любой степени, и поле наших исследований значительно расширилось. Я полагаю, что из всех возможных направлений разработки практичного осветительного прибора, направление высокого вакуума кажется наиболее многообещающим. Но для получения крайней степени вакуума приборы должны быть значительно усовершенствованы, и абсолютного совершенства мы не достигнем, пока не заменим механическую помпу усовершенствованной электрической. Молекулы и атомы могут быть вытеснены из лампы под воздействием огромного потенциала: таков будет принцип вакуумной помпы будущего. В настоящее же время мы должны получить наилучший результат механическими средствами. В этом плане не лишними окажутся несколько слов о методе и устройстве для получения крайне высокой степени вакуума, которые я создал в процессе моих исследований. Очень вероятно, что и другие исследователи могли пользоваться подобными установками, но так как, возможно, в описании этой будет нечто интересное, несколько замечаний, которые позволят обрисовать изыскания более полно, я всё же сделаю.

Устройство показано на рисунке 30. 5 — это насос Шпренгеля, который был изготовлен специально для этой работы. Запорный кран не использовался, а вместо него в горловину резервуара R был вмонтирован полый клапан 5. Этот клапан имеет небольшое отверстие h, через которое поступает ртуть; размер выxoднoгo отверстия о тщательно выверен и подогнан под сечение трубки r, которая припаяна к резервуару, а не соединена с ним обычным способом. В этом устройстве удалось избежать проблем и недостатков, которые часто возникают вследствие использования запорного крана на резервуаре и соединения последнего с вертикальной трубкой.

Помпа соединяется U-образной трубкой Т с большим резервуаром Rf. С особой тщательностью были пригнаны поверхности кранов р и рробе они, а также ртутные чашки над ними сделаны особенно "длинными. После того, как U-образная трубка была пригнана и установлена на место, ее нагрели, чтобы снять напряжение неплотно пригнанных частей. U-образная трубка имеет запорный кран С и два отвода д и д1 — один для маленькой колбы Ь, где находится едкое кали, а другой — для приемника r, где надо создать вакуум.

  • Читать дальше
  • 1
  • ...
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: