Вход/Регистрация
Параллельное и распределенное программирование на С++
вернуться

Хьюз Камерон

Шрифт:

Таблица 11.2. Ос н овные различия между мью т ексами и семафорами

• Характеристики мьютексов

• Мьютексы и переменные условий разделяются между потоками

• Мьютекс деблокируется теми же потоками, которые его заблокировали

• Мьютекс либо блокируется, либо деблокируется

• Характеристики семафоров

• Семафоры обычно разделяются между процессами, но их разделение возможно и между потоками

• - Освобождать семафор должен необязательно тот процесс или поток, который его удерживал

• Семафоры управляются количеством ссылок. Стандарт POSIX включает именованные семафоры

Несмотря на важность различий в семантике (см. табл. 11.2), часто их оказывается недостаточно для оправдания применения к семафорам и мьютексам совершенно различных интерфейсов. Поэтому мы оставляем «полуширокий» интерфейс для функций lock, unlock и trylock с одним предостережением: программист должен знать различия между мьютексом и семафором. Это можно сравнить с ситуацией, которая возникает с такими «широкими» интерфейса м и таких контейнерных классов, как deque, queue, set, multiset и пр. Эти контейнерные классы связаны общим интерфейсом, но их семантика в определенных областях различна. Используя понятие интерфейсного класса, можно разработать соответствующие компоненты синхронизации для мьютексов, переменных условий, мьютексов чтения-записи и семафоров. Имея такие компоненты, мы можем спроектировать безопасные (с точки зрения параллелизма) контейнерные, доменные и каркасные классы. Мы можем также применять интерфейсные классы для обеспечения единого интерфейса с различными версиями одной и той же библиотеки функций при необходимости использования обеих версий (по разным причинам) в одном и том же приложении. Иногда интерфейсный класс может быть успешно применен для безболезненного перехода от устарелых функций к новым. Если мы хотим оградить программиста от различий, существующих между операционными системами, то наша цель — обеспечить его соответствующим АРI-интерфейсом [18], независимо от того, какая библиотека семафорных функций используется в среде: System V или POSIX.

Поддержка потокового представления

Помимо использования интерфейсных классов для упрощения программирования и создания новых «широких» интерфейсов библиотек средств параллелизма и передачи сообщений, имеет смысл также расширить существующие интерфейсы. Например, объектно-ориентированное представление потоков данных можно расширить за счет использования каналов, FIFO-очередей и таких библиотек передачи сообщений, как PVM и MPI. Эти компоненты используются ради достижения межпроцессного взаимодействия (Inter-Process Communication — IPC), межпотокового взаимодействия (Inter-Thread Communication — ITC), а в некоторых случалх и взаимодействия между объектами (Object-to-Object Communicaton — OTOC). Если взаимодействие имеет место между параллельно выполняемыми потоками или процессами, то канал связи может представлять собой критический раздел. Другими словами, если несколько процессов (потоков) попытаются одновременно обновить один и тот же канал, FIFO-очередь или буфер сообщений, непременно возникнет «гонка» данных. Если мы собираемся расширить объектно-ориентированный интерфейс потоков данных за счет включения компонентов из библиотеки PVM или MPI, нам нужно быть уверенными в том, что доступ к этим потокам данных будет безопасен с точки зрения параллелизма. Именно здесь могут пригодиться наши компоненты синхронизации, спроектированные в виде интерфейсных классов. Рассмотрим простой класс pvm_stream.

// Листинг 11.12. Объявление класса pvm_stream, который

// наследует класс mios

class pvm_stream : public mios{

protected:

int TaskId;

int MessageId;

mutex Mutex;

//...

public:

void taskId(int Tid);

void messageId(int Mid);

pvm_stream(int Coding=PvmDataDefault);

void reset(int Coding = PvmDataDefault);

pvm_stream &operator<<(string &Data);

pvm_stream &operator>>(string &Data);

pvm_stream &operator>>(int &Data);

pvm_stream &operator<<(int &Data);

//. . .

};

Этот класс обработки потоков данных предназначен для инкапсуляции состояния активного буфера в PVM-задаче. Операторы вставки "<<" и извлечения ">>" можно использовать для отправки и приема сообщений между PVM-процессами. Здесь мы рассмотрим использование этих операторов только для обработки строк и значений типа int. Интерфейс этого класса далек от совершенства. Поскольку этот класс предназначен для обработки данных любого типа, мы должны расширить определения операторов "<<" и ">>". А так как мы планируем использовать класс pvm_stream в многопоточной программе, мы должны быть уверены в том, что объект класса pvm_stream безопасен для потоков. Поэтому мы включаем в качестве члена нашего класса pvm_stream класс mutex. Поскольку сообщение может быть направлено для конкретной PVM-задачи, класс pvm_stream инкапсулирует для нее активный буфер. Наша цель — использовать классы ostream и istream в качестве «путеводителя» по функциям, которые должен иметь класс pvm_stream. Вспомним, что классы ostream и istream являются классами трансляции. Они переводят типы данных в обобщенные потоки байтов при выводе и обобщенные потоки байтов в конкретные типы данных при вводе. Используя классы istream и ostream, программисту не нужно погружаться в детали вставки в поток или выделения из потока данных того или иного типа. Мы хотим, чтобы и поведение класса pvm_stream было аналогичным. Библиотека PVM располагает различными функциями для каждого типа данных, которые необходимо упаковать в буфер отправки или распаковать из буфера приема. Например, функции pvm_pkdouble pvm_pkint pvm_pkfloat используются для упаковки double-, int- и float-значений соответственно. Аналогичные функции существуют и для других типов данных, определенных в С++. Мы бы хотели поддерживать наше потоковое представление, т.е. чтобы ввод и вывод данных можно было представить как обобщенный поток байтов, который перемещается в программу или из нее. Следовательно, мы должны определить операторы вставки (<<) и извлечения (>>) для каждого типа данных, который мы собираемся использовать при обмене сообщениями между PVM-задачами. Мы также моделируем состояние потока данных в соответствии с классами istream и ostream, которые содержат компонент ios, предназначенный для хранения состояния этого потока. Поток данных может находиться в состоянии ошибки либо в одном из различных состояний, которые выражаются восьмеричным, десятичным или шестнадцатеричным числом. Поток также может пребывать в нормальном, заблокированном или состоянии конца файла. Класс pvm_stream должен не только содержать компонент, который поддерживает состояние потока данных, но и методы, которые устанавливают заданное или исходное состояние PVM-задачи, а также считывают его. Наш класс pvm_stream для этих целей содержит компонент mios. Этот компонент поддерживает состояние потока данных и активного буфера отправки и приема информации. На рис. 11.4 представлены две диаграммы классов: одна отображает отношения между основными классами библиотеки iostream, а вторая — отношения между классом pvm_stream и ero компонентами.

Обратите внимание на то, что классы istream и ostream наследуют класс ios . Класс ios поддерживает состояние потока данных и состояние буфера, используемого классами istream и ostream. Наш класс mios исполняет ту же роль в отношении класса pvm_stream. Классы istream и ostream содержат определения операторов "<<" и ">>". Эти же операторы определены и в нашем классе pvm_stream. Поэтому, хотя наш класс pvm_stream не связан с iostream-классами наследованием, между ними существует интерфейсная связь. Мы используем интерфейс iostream-классов в качестве «полуширокого» интерфейса для классов pvm_stream и mios. Обратите внимание на то, что класс mios (см. рис. 11.4) наслелуется классом pvm_stream. Если мы хотим поддерживать потоковое представление с помощью класса pvm_stream, то для этого как раз подходит понятие интерфейсного класса.

Рис. 11.4. Диаграмма классов, отображающая отношения между основными классами библиотеки iostream, и диаграмма класса pvm_stream

Перегрузка операторов "«" и "»" для PVM-потоков данных

Итак, рассмотрим определение операторов "«" и ">>" для класса pvm__stream. Оператор вставки (<<) используется для заключения в оболочку функций pvm_send и pvm_pk. Вот как выглядит определение этого операторного метода.

// Листинг 11.13. Определение оператора "<<" для класса

// pvm_stream class

pvm_stream &pvm_stream::operator<<(int Data) {

//...

reset;

pvm_pkint(&Data,1,1); pvm_send(TaskId,MessageId); //.. .

return(*this);

}

Подобное определение существует для каждого типа данных, которые будут обрабатываться с использованием класса pvm_stream. Метод reset унаследован от класса mios. Этот метод используется для инициализации буфера отправки д анных. TaskId и MessageId — это члены данных класса pvm_stream, которые устанавливаются с помо щ ью мето д ов taskId( ) и messageId( ). Определяемый здесь оператор вставки позволяет отправлять данные PVM-задаче с помощью стандартной записи операции вывода в поток.

  • Читать дальше
  • 1
  • ...
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: