Шрифт:
(а) (b)
Рис 12.8 Смыкание вселенной с тремя обычными измерениями, представленными сеткой, и (а) двух скрученных измерений в форме пустых сфер, и (b) трех скрученных измерений в форме твердых шаров.
Как и с кругом, вы должны представлять сферу прикрепленной к каждой точке обычных измерений, даже если на Рис. 12.8а, чтобы оставить рисунок ясным, мы нарисовали только те сферы, которые лежат на пересечениях линий сетки. Во вселенной такого сорта вам всего понадобится пять блоков информации, чтобы определить положение в пространстве: три блока, чтобы определить ваше положение в больших измерениях (улица, пересекающая улица, номер этажа) и два блока, чтобы определить ваше положение на сфере (широта, долгота), прикрепленной к этой точке. Безусловно, если радиус сферы мал – в миллиарды раз меньше, чем атом, – последние два блока информации почти не будут иметь значения для относительно больших объектов вроде нас самих. Тем не менее, дополнительная размерность является интегральной частью ультрамикроскопического строения пространственной ткани. Ультрамикроскопическому червяку понадобятся все пять блоков информации и, если мы включим время, ему потребуется шесть блоков информации, чтобы указать, где будет вечеринка и в какое время.
Продвинемся еще на одно измерение дальше. На Рис. 12.8а мы рассмотреди только поверхность сфер. Представьте теперь, что, как на Рис.12.8b, ткань пространства включает также и внутренность сфер, – наш маленький планковского размера червяк может закопаться в сферу, как обычный червяк делает с яблоком, и свободно двигаться через ее внутренности. Чтобы определить положение червяка, теперь требуется шесть блоков информации: три, чтобы определить его положение в обычных протяженных пространственных измерениях, и еще три, чтобы определить его положение в шаре, прикрепленном к данной точке (широта, долгота, глубина проникновения). Вместе со временем, следовательно, это есть пример вселенной с семью пространственно-временными измерениями.
Теперь перепрыгнем дальше. Хотя это невозможно нарисовать, представьте, что в каждой точке в трех протяженных измерениях повседневной жизни вселенная имеет не одно дополнительное измерение как на Рис. 12.7, не два дополнительных измерения, как на Рис.12.8а, не три дополнительных измерения, как на Рис.12.8b, но шесть дополнительных пространственных измерений. Я, конечно, не могу визуализировать это, и я никогда не встречал никого, кто бы смог. Но его смысл ясен. Чтобы определить пространственное положение червяка планковского размера в такой вселенной, требуется девять блоков информации: три, чтобы определить его положение в обычных протяженных измерениях, и еще шесть, чтобы определить его положение в скрученных измерениях, прикрепленных к этой точке. Когда время также принимается во внимание, это оказывается вселенной с десятимерным пространством-временем, как требуется уравнениями теории струн. Если дополнительные шесть измерений скручены в достаточно малые образования, они легко ускользнут от обнаружения.
Форма скрытых размерностей
Уравнения теории струн на самом деле определяют больше, чем просто число пространственных размерностей. Они также определяют виды форм, которые дополнительные размерности могут принимать. [18] На предыдущих рисунках мы сосредоточились на простейших формах – круги, полые сферы, твердые шары, – но уравнения теории струн выбирают существенно более широкий класс шестимерных форм, известных как формы или многообразия или пространства Калаби-Яу. Эти пространства названы в честь двух математиков, Эугенио Калаби и Шинь-Тунь Яу, которые математически открыли их задолго до того, как стала очевидной их применимость к теории струн; грубая иллюстрация одного примера дана на Рис. 12.9а. Надо иметь в виду, что на этом рисунке двумерное изображение иллюстрирует шестимерный объект, и это приводит к большому числу существенных искажений. Даже при этих условиях рисунок дает грубое представление о том, на что похожи указанные формы. Если особая форма Калаби-Яу из Рис. 12.9а составляет дополнительные шесть измерений теории струн, пространство на ультрамикроскомическом масштабе будет иметь вид, иллюстрируемый на Рис.12.9b. Поскольку форма Калаби-Яу будет прилагаться к каждой точке в обычных трех измерениях, вы, и я и кто угодно другой прямо сейчас будет окружен и наполнен этими маленькими формами. Без преувеличения, если вы переходите из одного места в другое, ваше тело будет двигаться через все девять измерений, быстро и одно за другим проходя через целые формы, в среднем делая кажущимся, как будто вы не двигаетесь через дополнительные шесть измерений совсем.
18. Заметим, что требование однородной симметрии, которое мы использовали в Главе 8, чтобы сузить количество форм вселенной, мотивируется астрономическими наблюдениями (такими как наблюдения микроволнового фонового излучения) внутри трех больших измерений. Эти симметрийные ограничения не влияют на форму возможных шести мельчайших дополнительных измерений.
(а) (b)
Рис 12.9 (а), Один из примеров форм или пространств Калаби-Яу, (b) Сильно увеличенный участок пространства с дополнительными измерениями в форме мельчайших пространств Калаби-Яу.
Если эти идеи верны, ультрамикроскопическая ткань космоса украшена богатейшей текстурой.
Физика струн и дополнительные измерения
Красота ОТО в том, что физика гравитации контролируется геометрией пространства. С дополнительными пространственными измерениями, предлагаемыми теорией струн, вы, очевидно, догадались, что мощь геометрии для определения физики должна значительно возрасти. И это происходит. Увидим это сначала, рассмотрев вопрос, который я до сих пор обходил стороной. Почему теория струн требует десяти пространственно-временных измерений? Это вопрос, на который трудно ответить нематематически, но я все-таки могу объяснить достаточно, чтобы проиллюстрировать, как он сводится к взаимодействию геометрии и физики.
Представьте струну, которая может колебаться только на двумерной поверхности плоского стола. Струна будет в состоянии осуществлять разнообразные способы колебаний, но только такие, которые включают движения в направлениях вправо/влево и вперед/назад на поверхности стола. Если теперь струне позволить колебаться в третьем направлении, двигаясь в направлении вверх/вниз, покидая поверхность стола, становятся достижимыми дополнительные способы колебаний. Теперь, хотя это тяжело нарисовать более чем в трех измерениях, это заключение – большее количество измерений означает большее количество способов (мод) колебаний – является общим. Если струна может колебаться в четвертом пространственном измерении, она может выполнить больше видов колебаний, чем она могла только в трех измерениях; если струна может колебаться в пятом пространственном измерении, она может проявить больше способов колебаний, чем это было только в четырех измерениях; и так далее. Это важный вывод, поскольку в теории струн имеется уравнение, которое требует, чтобы число независимых способов колебаний удовлетворяло очень точному ограничению. Если ограничение нарушается, математика теории струн разваливается и ее уравнения становятся бессмысленными. Во вселенной с тремя пространственными измерениями число способов колебаний слишком мало и ограничение не выполняется; с четырьмя пространственными измерениями число способов колебаний все еще слишком мало; для пяти, шести, семи или восьми измерение оно все еще слишком мало; но для девяти пространственных измерений ограничение на число способов колебаний выполняется в точности. Именно так теория струн определяет число пространственных измерений.* [19]
19. Вы можете поинтересоваться, возможны ли не только дополнительные пространственные измерения, но также и дополнительные временные измерения. Исследователи (такие как Ицхак Барс из Университета Южной Калифорнии) исследовали эту возможность и показали, что, по меньшей мере, возможно сформулировать теорию со вторым временным измерением, которая кажется физически обоснованной. Но является ли это второе временное измерение реальным на пару с обычным временным измерением, или это только математический трюк, никогда полностью не устанавливалось; общее ощущение скорее в пользу второго, чем первого. По контрасту с этим, прямое прочтение теории струн говорит, что дополнительные пространственные измерения являются во всех отношениях столь же реальными, как и три, которые мы знаем.
(*)"Позвольте мне подготовить вас к одному существенному результату, с которым мы столкнемся в следующей главе. Струнные теоретики десятки лет знали, что уравнения, которые они обычно используют для математического анализа теории струн являются приблизительными (точные уравнения оказывается на практике тяжело идентифицировать и понять). Однако, большинство думает, что приблизительные уравнения были достаточно точны для определения требуемого числа дополнительных измерений. Совсем недавно (и к шоку большинства физиков, работающих в этой области) некоторые струнные теоретики показали, что приближенные уравнения теряют одно измерение; сейчас признано, что теория требует семь дополнительных измерений. Как мы увидим, это не компроментирует материал, обсужденный в этой главе, но показывает, что он годится для более широкой, фактически более унифицированной схемы. [20] "
20. Эксперты по струнной теории (и те, кто прочитал Элегантную вселенную, Глава 12) распознают, что более точное утверждение заключается в том, что определенные формулировки теории струн (обсужденные в Главе 13 этой книги) допускают пределы, содержащие одиннадцать пространственно-временных измерений. Все еще обсуждается, не лучше ли думать о теории струн как о теории, фундаментально действующей в одиннадцати пространственно-временных измерениях, или одиннадцатимерная формулировка должна рассматриваться как особый предел (например, когда константа струнного взаимодействия выбирается большой в формулировке типа IIА) наряду с другими пределами. Так как это различие почти не оказывает воздействия на наше обсуждение на общем уровне, я выбрал первую точку зрения, в значительной степени из-за лингвистической простоты случая, когда имеется фиксированное и неизменное число измерений.
Хотя это хорошо иллюстрирует взаимодействие геометрии и физики, их объединение в рамках теории струн идет еще дальше и, фактически, обеспечивает способ обращения с критической проблемой, с которой мы сталкивались ранее. Повторим, что в попытках установить детальную связь между модами колебаний струны и известными семействами частиц физики потерпели крах. Они нашли, что имеется слишком много безмассовых способов колебаний струны и, более того, детальные свойства способов колебаний не соотносятся со свойствами известных частиц материи и сил. Но, о чем я не упоминал ранее, поскольку мы еще не обсуждали идею дополнительных измерений, хотя такие вычисления принимали в расчет число дополнительных измерений (отчасти объясняя, почему было найдено так много способов колебаний струн), они не принимали в расчет малого размера и сложной формы дополнительных измерений, – они предполагали, что все пространственные измерения плоские и полностью развернутые, – а это приводит к существенным отличиям.