Шрифт:
Ранее научное исследование фокусировалось на видах вещей, которые можно видеть или ощущать в повседневной жизни. Галилей сбрасывал тяжести с наклонной башни (или так гласит легенда) и наблюдал за шариками, скатывающимися по наклонной плоскости; Ньютон изучал падающие яблоки (или так гласит легенда) и орбиту Луны. Целью этих исследований было приспособление нарождающегося слуха науки к природным гармониям. Есть уверенность, что физическая реальность была материалом для ощущений, но сложной задачей было услышать рифму и причину за ритмом и регулярностью. Многие воспетые и невоспетые герои внесли вклад в быстрый и впечатляющий прогресс, который был осуществлен, но Ньютон обошел всех. С горсткой математических уравнений он воспроизвел все известное о движении на земле и в небесах и, делая это, соединил главные моменты, прийдя к тому, что известно как классическая физика.
В течение десятилетий, следующих за трудами Ньютона, его уравнения были развиты в законченную математическую структуру, что существенно расширило как их область действия, так и практическую ценность. Классическая физика постепенно стала изощренной и зрелой научной дисциплиной. Но ясно сияющим сквозь все эти достижения остается сигнальный огонь оригинального прозрения Ньютона. Даже сегодня, более чем через три сотни лет, вы можете увидеть ньютоновские уравнения, небрежно написанные во всем мире мелом на школьных досках при введении в физику, напечатанные в расчетах траекторий в полетных планах НАСА и встроенные в сложные расчеты передовых исследований.
Ньютон привел богатство физических явлений в простые теоретические рамки.
Однако, во время формулирования своих законов движения Ньютон столкнулся с критически сбивающим с толку препятствием, одним из тех, что особенно важны для нашей истории (Глава 2). Каждый знает, что вещи могут двигаться, но как насчет арены, в рамках которой движение имеет место? Хорошо, мы все ответим, это пространство. Но, отзовется Ньютон, что есть пространство? Является ли пространство физической сущностью или это абстрактная идея, рожденная усилиями человека для осмысления космоса? Ньютон осознавал, что на этот ключевой вопрос должен быть ответ, поскольку без установления смысла пространства и времени его уравнения, описывающие движение, оказываются бессмысленными. Понимание требует контекста; проникновение в суть должно быть закреплено.
Итак, через несколько коротких высказываний в своих Принципах математики Ньютон озвучил концепцию пространства и времени, декларируя абсолютные и неизменные сущности, которые обеспечивают вселенной жесткую, не подверженную изменениям арену. Согласно Ньютону, пространство и время обеспечивают невидимую платформу, которая дает вселенной порядок и структуру. Никто не согласился. Некоторые убедительно аргументировали, что имеет мало смысла приписывать существование тому, что вы не можете почувствовать, схватить или подвергнуть воздействию. Но объяснительная и предсказательная сила ньютоновских уравнений успокоила критику. В течение следующих двух сотен лет его абсолютная концепция пространства и времени была догмой.
Релятивистская реальность
Классический ньютоновский взгляд на мир радовал. Он не только описывал природные явления с поразительной точностью, но и детали описания – математика – строго соответствовали опыту. Если вы что-либо толкнете, его скорость возрастет. Чем сильнее вы бросите мяч, тем большее сотрясение он получит, когда шлепнется о стену. Если вы давите на что-либо, вы чувствуете его обратное давление на вас. Чем более массивным является предмет, тем сильнее его гравитационное притяжение. Все это находится в числе наиболее основных свойств естественного мира, и когда вы изучаете теорию Ньютона, вы видите их представление в его уравнениях, ясных как день. В отличие от необъяснимого фокуса-покуса с магическим кристаллом действие ньютоновских законов демонстрировало полноту для всех с минимальной математической тренировкой. Классическая физика обеспечила строгое основание для человеческой интуиции.
Ньютон включил силу гравитации в свои уравнения, но так было до 1860х годов, пока шотландский ученый Джеймс Клерк Максвелл не расширил рамки классической физики, приняв во внимание электрические и магнитные силы. Максвеллу понадобилось создать дополнительные уравнения, и математика, которую он применил, потребовала более высокого уровня тренировки, чтобы понять ее полностью. Но его новые уравнения были во всех отношениях столь же успешны для объяснения электрических и магнитных явлений, как ньютоновские были успешны для объяснения движения. С конца 1800х было очевидно, что секреты вселенной больше не сопротивляются силе человеческого интеллектуального могущества.
В самом деле, с успешным присоединением электрических и магнитных сил, было растущее ощущение, что теоретическая физика скоро завершится. Физики, предполагали некоторые, быстро получат конечные объекты, и их законы скоро будут высечены в камне. В 1894 известный физик-экспериментатор Альберт Майкельсон заметил, что "большинство из великих основопологающих принципов твердо установлены", и он сослался на "видного ученого", – вероятнее всего, это был британский физик лорд Кельвин, – который сказал, что все, что остается, – это детали определения некоторых чисел до более высоких десятичных цифр после запятой. [1] В 1900 Кельвин сам отметил, что "два облачка" нависают на горизонте, первое связано со свойствами движения света, а второе с поведением излучающих объектов, испускающих излучение при нагревании, но есть полная уверенность, что это всего лишь детали, которые, несомненно, скоро найдут свои объяснения. [2]
1. Лорд Кельвин цитировался физиком Альбертом Майкельсоном во время его обращения в 1894 при открытии Лаборатории Райерсона в Чикагском Университете (см. D.Kleppner, Physics Today, November 1998).
2. Lord Kelvin, "Nineteenth Century Clouds over the Dynamical Theory of Heat and Light," Phil. Mag. Ii – 6th series, 1 (1901).
В течение десяти лет все изменилось. Как и ожидалось, две проблемы, которые поднял Кельвин, быстро нашли свои объяснения, но они оказались какими угодно, но только не незначительными. Каждая породила революцию, и каждая потребовала фундаментального переписывания законов природы. Классические концепции пространства, времени и реальности – те самые, которые на протяжении сотен лет не только работали, но также лаконично выражали наши интуитивные ощущения мира, – были низвергнуты.
Релятивистская революция, к которой привело первое из "облачков" Кельвина, датируется 1905 и 1915 годами, когда Альберт Эйнштейн завершил свои специальную и общую теории относительности (Глава 3). Во время борьбы с головоломками, включающими электричество, магнетизм и движение света, Эйнштейн осознал, что ньютоновская концепция пространства и времени, краеугольный камень классической физики, раскололась. После нескольких недель интенсивного труда весной 1905 он определил, что пространство и время не являются независимыми и абсолютными, как думал Ньютон, а являются запутанными и относительными таким способом, который бросает вызов повседневному жизненному опыту. Примерно через десять лет Эйнштейн вбил последний гвоздь в гроб ньютонианства, переформулировав законы гравитационной физики. В это время, но не только, Эйнштейн показал, что пространство и время являются частью единого целого, он также показал, что через деформации и искривления они принимают участие в космической эволюции. В отличие от жестких и неизменных структур, которые представлял Ньютон, пространство и время в переработке Эйнштейна эластичны и динамичны.