Шрифт:
Ди'на (от греч. d'ynamis — сила), единица силы в СГС системе единиц, равная силе, которая массе в 1 г сообщает ускорение 1 см/сек2. Русское обозначение — дин, международное — dyn. Соотношение между Д. и ньютоном (единицей силы в Международной системе единиц): 1 дин = 10– 5н.
Динамик
Дина'мик, распространённое краткое название электродинамического громкоговорителя.
Динамика (в музыке)
Дина'мика в музыке, совокупность явлений, связанных с применением различных степеней силы звучания, громкости. Основные градации силы звучания: piano (в нотах сокращённо р) — тихо, слабо и forte (f) — громко, сильно. Производные от piano в сторону ослабления: pianissimo (рр) — очень тихо, piano-pianissimo (ppp) — чрезвычайно тихо и т.д. (до ррррр); от forte в сторону усиления: fortissimo (ff) — очень громко, forte-fortissimo (fff) — чрезвычайно громко и т.д. (до fffff). Применяются также обозначения mezzo piano (mp) — умеренно тихо и mezzo forte (mf) — умеренно громко. Все эти обозначения относятся к более или менее протяжённым музыкальным отрывкам, в которых выдерживается в общем единая и неизменная степень громкости звучания. Внутри таких отрывков нередко выделяются по громкости отдельные звуки, что обозначается терминами forzato, sforzato и др. (см. Акцент). В музыке широко используется и постепенное усиление или ослабление звучания. Усиление звучания обозначается термином crescendo (cresc, знак
Градации динамики и их обозначения имеют в музыке лишь относительное значение; абсолютная величина громкости зависит от многих факторов, в том числе от типа инструмента, при ансамблевом исполнении — от количества партий и числа исполнителей на каждую партию, а также от акустических свойств помещения. Так, по абсолютному значению piano на трубе гораздо громче, чем forte вокалиста, громкость звучания piano у целого хора значительно выше, чем у отдельного его участника, и т.п. Абсолютные величины громкости измеряются в акустике и выражаются в фонах (см. Громкость звука).
Динамика звёздных систем
Дина'мика звёздных систе'м, то же, что звёздная динамика.
Динамика машин и механизмов
Дина'мика маши'н и механи'змов, раздел теории машин и механизмов, в котором изучается движение механизмов и машин с учётом действующих на них сил. Д. м. и м. решает следующие основные задачи: установление законов движения звеньев механизмов, регулирование движения звеньев, нахождение потерь на трение, определение реакций в кинематических парах, уравновешивание машин и механизмов.
Определение законов движения звеньев механизма по заданным характеристикам внешних сил решают с помощью дифференциальных уравнений движения механической системы или машинного агрегата, состоящего обычно из двигателя, передаточного механизма, рабочей машины и иногда управляющего устройства. Число уравнений равняется числу степеней свободы этой механической системы. В плоских механизмах с одной степенью свободы для удобства решения задачи все силы и массы приводят к одному звену или точке механизма, которые называются звеном приведения или точкой приведения. Условный момент, приложенный к звену приведения, называется моментом приведения. Момент приведения равен совокупности всех моментов и сил, приложенных к звеньям механизма. Условный момент инерции звена приведения называется приведённым моментом инерции. Кинетическая энергия звена приведения равна сумме кинетических энергий всех звеньев механизма. Аналогично определяют приведённые силу и массу в точке приведения (рис., а):
где Мп — приведённый момент; Jп — приведённый момент инерции; Рп — приведённая сила; mп — приведённая масса; M1, M2, P2, P3 — моменты и силы, приложенные к звеньям механизма; w1, w2 — угловые скорости звеньев; uB, uC — скорости точек В и С механизма; uS2 — скорость центра тяжести звена 2; uK — скорость точки К приложения силы P2; a2 — угол между векторами P2 и uK; a3 — угол между векторами P3 и uC. Уравнение движения для данного случая:
т. е, Мп в общем случае зависит от времени, положения, скорости.
Уравнения движения обычно являются нелинейными. Методов точного решения их не существует, поэтому пользуются приближёнными графическими, графо-аналитическими и численными методами интегрирования. Установить закон движения механической системы сложнее, если учитывать трение и зазоры в кинематических парах, упругость и переменность масс звеньев. Иногда, например при изучении быстротекущих процессов в машинах, некоторые внешние силы нельзя считать заданными, т.к. движение механизма может оказать обратное воздействие на характеристику этих сил. Например, в некоторых режимах с большими ускорениями нельзя принимать механическую характеристику электродвигателя как заданную зависимость момента на валу двигателя от угловой скорости, т.к. на этот момент существенное влияние могут оказать электромагнитные процессы в электродвигателе. В этом случае к дифференциальным уравнениям движения механической системы добавляют дифференциальное уравнение электромагнитных процессов в электродвигателе и решают их совместно.
Вопросы регулирования движения машинного агрегата и управления им рассматриваются в теории регулирования. Различают неустановившийся, переходный и установившийся режимы движения. При установившемся режиме скорости точек механизма являются периодическими функциями времени или положения или остаются постоянными. Регулирование установившегося движения сводится к обеспечению угловой скорости звена приведения, не превышающей допустимого отклонения от её значения. Для этого рассчитывают и устанавливают на машину специальную массу — маховик. Необходимость регулирования неустановившегося движения возникает в том случае, когда, несмотря на непериодическое изменение внешних сил или масс, в механизме требуется поддерживать среднюю скорость звена приведения постоянной. Для этого на машину устанавливают специальные автоматические регуляторы. Основной задачей при этом является определение устойчивости движения системы машина — регулятор. Если же скорость какого-либо звена (или др. параметра) нужно изменять по заданному закону (программе), то в машину встраивают программное устройство. Примером может служить программное управление металлорежущими станками. Конкретная задача, рассматриваемая теорией регулирования, — отыскание оптимальных режимов движения машин (оптимальное управление). Например, определение движения с наибыстрейшим переходным режимом при ограниченном ускорении, т. е. оптимального по быстродействию, или движения с минимумом затрачиваемой в переходном режиме энергии, т. е. оптимального по потерям.