Шрифт:
• отрицательное высказывание истинно, когда отрицаемое высказывание ложно, и наоборот.
С помощью таблиц истинности в случае любого сложного высказывания можно определить, при каких значениях истинности входящих в него простых высказываний это высказывание истинно, а при каких ложно.
Логика высказываний — это определённая совокупность формул, т.е. сложных высказываний, записанных на специально сконструированном искусственном языке. Язык логики высказываний включает:
1. неограниченное множество переменных: А, В, С, …, А1, В1, С1, …, представляющих высказывания;
2. особые символы для логических связок: & — «и», v — «или», V — «либо, либо», → — «если, то», ↔ — «если и только если», ~ — «неверно, что»»
3. скобки, играющие роль знаков препинания обычного языка. Чтобы использовать меньшее количество скобок, условимся, что операция отрицания выполняется первой, затем идут конъюнкция и дизъюнкция, и только после этого импликация и эквивалентность.
Формулам логики высказываний, образованным из переменных и связок, в естественном языке соответствуют предложения. К примеру, если А есть высказывание «Сейчас день», В — высказывание «Сейчас светло» и С — высказывание «Сейчас холодно», то формула:
А → В v С, или со всеми скобками: (А → (В v С)),
представляет высказывание «Если сейчас день, то сейчас светло или холодно». Формула:
В & С → А, или ((В & С) → А),
представляет высказывание «Если сейчас светло и холодно, то сейчас день». Формула:
~ В → ~ А, или ((~ В) → (~ А)),
представляет высказывание «Если неверно, что сейчас светло, то неверно, что сейчас день» и т.п. Подставляя вместо переменных другие конкретные (истинные или ложные) высказывания, получим другие переводы указанных формул на обычный язык.
Формула, которой не соответствует осмысленное предложение, построена неправильно.
Таковы, в частности, формулы:
(А →), ( & В), (A v ВС), ( ~ & ) и т.п.
Каждой формуле логики высказываний соответствует таблица истинности, показывающая, при каких подстановках конкретных высказываний в данную формулу она даёт истинное сложное высказывание, а при каких ложное. Например, формула (~ В → ~ А) даст ложное высказывание, только если вместо В подставить ложное высказывание, а вместо А — истинное.
Всегда истинная формула логики высказываний, или тавтология, — это формула, дающая истинное высказывание при любых подстановках, в неё конкретных (т.е. истинных или ложных) высказываний.
Иными словами, внутренняя структура тавтологии гарантирует, что она всегда превратится в истинное высказывание, какими бы конкретными высказываниями мы ни заменяли входящие в неё переменные.
Всегда ложная формула, или логическое противоречие, всегда превращается влажное высказывание при подстановке конкретных высказываний вместо её переменных.
Покажем для примера что формула:
(А — В) → (~ В → ~ А)
является тавтологией. Для этого переберём варианты подстановок вместо переменных А и В конкретных высказываний. Таких вариантов, очевидно, четыре: оба подставляемых высказывания истинны, оба они ложны, первое из них истинно, а второе ложно, и первое ложно, а второе истинно.
В результирующей колонке таблицы встречается только значение «истинно», т.е. формула является всегда истинной.
Нетрудно убедиться, например, что формула: