Шрифт:
А. Окуньков на конференции в ИППИ РАН, август 2009 г.
– А как в личном общении передаются какие-то вещи философского плана, которые в статьях писать у математиков не принято?
— Постоянно. В научной мудрости, кстати, Александр Александрович остается непревзойденным. Многие его высказывания со мной остались на всю жизнь. Он, конечно, не Конфуций, не стремился говорить афоризмами, не то чтобы у нас на семинаре висела перетяжка со словами...
– «математика — царица всех наук»!
— Вот-вот, ничего такого не было. Но какие-то фразы, которые просто были частью его мыслительного процесса, на мой ум произвели совершенно неизгладимое впечатление. И я их до сих пор повторяю. Например, однажды он сказал: «Современные математики приходят на работу в кабинет и садятся доказывать теорему. Это ошибка. Классики науки так не делали, они считали и смотрели, что получится». То есть такое отношение к математике как к своего рода химии — смешали, бабахнуло, не бабахнуло.
И в том же ключе: «Легче обобщить пример, чем специализировать теорию». То есть догадаться, что какая-то общая теория применима к какой-то конкретной задаче, — это гораздо сложнее, чем развить общую теорию, опираясь на «один хорошо сосчитанный пример». Это, кстати, точные слова Александра Александровича: «один хорошо сосчитанный пример». Я на всю жизнь научился ценить такие примеры и нахожу в этом глубочайшую мудрость.
– Для практика вроде бы вещь очевидная?
— Я понимаю, это как если бы выпускник бизнес-школы находил глубочайшую мудрость в том, чтобы не тратить больше, чем зарабатываешь. Но, увы, как современным математикам, так и финансистам зачастую не приходит в голову стоять хотя бы одной ногой на земле.
А.М. Вершик и другие участники конференции в ИППИ РАН, август 2009 г. (Фото Н. Деминой)
– В чем разница между математикой, которую Вам открыли учителя, и математикой, в которой живете теперь Вы и которую Вы открываете уже своим ученикам?
— Есть вещи, которые практически не изменились, — это базовые, магистральные направления в развитии математики. Потому что математика — это вертикальная, логическая структура. Для того, чтобы кто-то возвел блистательный шпиль, нужно много отесанных или неотесанных глыб положить в основание этого здания. И только потом оно увенчается каким-то блистательным доказательством. Поэтому центральные проблемы математики меняются не на протяжении одного поколения, а на гораздо больших временных горизонтах. Если Вы посмотрите на проблемы Гильберта или «миллионные» задачи, то большинство из них эволюционировало на промежутке порядка ста лет. Как ни убыстряется темп развития математики, а основные ее направления меняются медленно.
– А что изменилось?
— То, как мы работаем, как мы идем к своей цели. Понятно, что много времени математики просто думают — это процесс, который трудно объяснить. И это думанье — а в хорошие дни прямо-таки мышление — периодически приводит к озарению. Это момент большого счастья. Но так бывает в жизни каждого математика, может быть, дюжину раз. А большую часть времени мы, как первопроходцы в джунглях, в темноте, с каким-то маленьким ножиком, с подручными средствами, пробираемся сквозь мглу неизвестно куда.
Но, к счастью, мощь этих подручных средств растет, и прорубаемся мы с их помощью все эффективнее. Тот «один хорошо сосчитанный пример», про который мы говорили раньше, обычно был записан карандашом в тетрадке. А теперь для всех сколько-нибудь рутинных вычислений у нас есть очень мощные и умные программы. А ведь вычисления — это, действительно основа. Как в физике эксперименты. Глядя на них, мы строим и проверяем наши догадки. Все равно, конечно, на них уходит много сил и времени: недели, а порой и месяцы, чтобы написать, отладить и дождаться ответа. Но посчитать подобной сложности пример старыми методами было бы, конечно, немыслимо.
– Это первое. А что еще изменилось?
— Когда прорубаемся в тростнике, мы часто имеем довольно смутное представление о том, что делают наши коллеги. Исторически много туннелей в математике было прорыто параллельно.
– То есть многие вещи переоткрывались, и не один раз? Но ведь обычно результаты публикуются моментально?
— Верно. Но математика столь велика, что никому не по силам знать ее всю. Даже в одной отдельной области уследить за новинками и удержать в памяти всю классику было реалистично еще, может быть, лет 20–30 назад. А что теперь? Теперь мы должны опираться на современные средства поиска информации, которые, надо сказать, очень помогают. Например, Американское математическое общество предлагает подписчикам электронную базу данных более-менее всех статей по математике с разнообразными и эффективными средствами поиска, рефератами и т.д.