Шрифт:
Кубик льда, брошенный в стакан воды комнатной температуры, тает, но мы никогда не увидим молекулы в стакане воды комнатной температуры, объединившиеся в твёрдый кубик льда. Эти общие последовательности событий, как и бесчисленные другие, происходят только в одном временном порядке. Они никогда не происходят в обратном порядке, поэтому они обеспечивают представление о дои после— они дают нам непротиворечивую и кажущуюся универсальной концепцию прошлого и будущего. Эти наблюдения убеждают нас, что если бы мы исследовали всё пространство-время, находясь снаружи (как на рис. 5.1), мы бы увидели существенную асимметрию вдоль оси времени. Разбившиеся яйца во всём мире будут лежать с одной стороны — стороны, которую мы обычно называем будущим, — по отношению к их целым предкам.
Возможно, наиболее поучительный вывод из всех этих примеров состоит в том, что наш разум имеет доступ к собранию событий, которые мы называем прошлым, — к нашей памяти, — но никто из нас не способен вспомнить набор событий, который мы называем будущим. Очевидно, существует большая разница между прошлым и будущим. Кажется, что наблюдается явное направление в том, как огромное разнообразие вещей разворачивается во времени. Кажется, что есть явное различие между вещами, которые мы можем вспомнить (прошлое), и вещами, которые мы вспомнить не можем (будущее). Это и есть то, что мы подразумеваем под наличием у времени ориентации, направления или стрелы. {66}
Физика, как и наука в целом, основывается на регулярности. Учёные изучают природу, ищут повторяющиеся образцы и кодируют эти образцы в законах природы. Вы могли бы поэтому подумать, что совершенно исключительная регулярность, которая с очевидностью приводит нас к ощущению стрелы времени, будет иметь отражение в фундаментальном законе природы. Наивный способ формулировки такого закона будет заключаться во введении Закона разливающегося молока, согласно которому чашки молока разливаются, но не «сливаются» назад, или Закона разбивающихся яиц, согласно которому яйца разбиваются, но никогда не собираются обратно. Но законы такого рода нам ничего не дают: это просто описание, оно не предлагает никакого объяснения кроме простого наблюдения за тем, что происходит. Мы же ожидаем, что где-то в глубинах физики должен быть менее наивный закон, описывающий движение и свойства частиц, который увязывает пиццу, молоко, яйца, кофе, людей и звёзды — фундаментальные составляющие всего — и который показывает, почему события развиваются в определённом порядке, но никогда в обратном. Такой закон дал бы фундаментальное объяснение наблюдаемой стреле времени.
В полное недоумение приводит то, что никто не открыл такого закона. Более того, законы физики, которые были сформулированы Ньютоном, затем Максвеллом и Эйнштейном и до сегодняшних дней, демонстрируют полную симметрию между прошлым и будущим. [35] Ни в одном из этих законов мы не найдём оговорки, что они применимы в одном направлении во времени, но не в другом. Нигде нет никакого различия между тем, как законы выглядят или ведут себя, когда они применяются к тому или иному направлению времени. Законы рассматривают то, что мы называем прошлым и будущим, совершенно одинаково. Хотя опыт снова и снова выявляет направление, в котором события разворачиваются во времени, эта стрела, кажется, не находит отражения в фундаментальных законах физики.
35
К этому утверждению существует исключение, связанное с определённым классом экзотических частиц. Поскольку это относится к обсуждаемым в этой главе вопросам, я должен отметить, что рассматриваю это обстоятельство как не имеющее существенного значения и более не буду этого касаться. Если вы заинтересованы, короткое обсуждение этого вопроса можно найти в примечании 2.
Прошлое, будущее и фундаментальные законы физики
Как такое может быть? Неужели законы физики не объясняют, чем прошлое отличается от будущего? Как может быть, что нет закона физики, который объяснял бы, почему события разворачиваются в этом порядке, но никогда не в обратном?
Ситуация более чем загадочна. Известные законы физики на самом деле декларируют — в отличие от нашего жизненного опыта, — что кофе со сливками можно разделить на чёрный кофе и белые сливки; растёкшийся желток и мелкие осколки скорлупы могут собраться месте и воссоздать совершенно целое яйцо; растаявший в стакане воды лёд при комнатной температуре может превратиться в кубик льда; газ, выделившийся при открытии колы, может вернуться назад в бутылку. Все физические законы, которые мы бережно храним, полностью поддерживают симметрию по отношению к обращению времени. Это означает, что если некоторая последовательность событий может разворачиваться в одном временном порядке (сливки и кофе смешиваются, яйца разбиваются, газ улетучивается), то эти события могут разворачиваться и в обратном порядке (сливки и кофе разделяются, яйца восстанавливаются, газ втягивается назад). В дальнейшем я это конкретизирую, но обобщение одной фразой таково: известные законы не только не способны сказать нам, почему мы видим события развивающимися только в одном порядке, они также говорят нам, что теоретически события могут разворачиваться и в обратном порядке. [36]
36
Отметим, что симметрия по отношению к обращению времени не означает, что само время разворачивается или «бежит» назад. Вместо этого указанная симметрия заключается в способности событий, происходящих во времени в одном временном порядке, происходить также и в обратном порядке. Более подходящим термином может быть симметрия по отношению к обращению событий, или обращению процессов, или обращению порядка событий, но мы будем придерживаться стандартно используемого термина.
Животрепещущий вопрос таков: почему мы никогда этого не видим? Я думаю, можно смело заключать пари, что никто никогда на самом деле не был свидетелем восстановления разбитого яйца.
Но если законы физики допускают это, и более того, если эти законы рассматривают разбивание и восстановление яйца одинаково, то почему одно никогда не происходит, в то время как другое имеет место?
Симметрия по отношению к обращению времени
В качестве первого шага к решению этой головоломки нам надо понять в более конкретных терминах, что означает для известных законов физики быть симметричными по отношению к обращению времени. С этой целью представьте, что идёт XXV в. и вы играете в теннис в новой межпланетной лиге с вашим партнёром по имени Вильямс «Мощный удар». Немного не привыкший к уменьшенной гравитации Венеры, «Мощный удар» делает сильнейший удар слева и запускает мяч в глубокую темноту пространства. Пересекающий пространство космический шаттл производит киносъёмку мяча, когда тот пролетает рядом, и посылает ленту в CNN (Celestial News Network — небесная сеть новостей) для телевещания. Возникает вопрос: если техники CNN сделали ошибку и запустили плёнку о теннисном мяче в обратном направлении, есть ли какой-нибудь способ это определить? Если вы знали направление и ориентацию камеры во время съёмок, то вы будете в состоянии распознать их ошибку. Но смогли бы вы распознать ошибку, просмотрев только саму плёнку без дополнительной информации? Ответ: нет. Если в правильном направлении времени (вперёд) плёнка показывает мяч летящим слева направо, то в обратном направлении он будет показан летящим справа налево. И, конечно, законы классической физики позволяют теннисным мячам двигаться как налево, так и направо. Так что движение, которое вы видите, когда плёнка прокручивается как в прямом, так и в обратном направлении, превосходно согласуется с законами физики.
Пока мы считали, что на теннисный мяч не действуют никакие силы, поэтому он двигается с постоянной скоростью. Рассмотрим теперь более общую ситуацию, включив силы. Согласно Ньютону, влияние силы заключается в изменении скорости объекта: силы сообщают ускорения. Представим, что после некоторого времени плавания в пространстве мяч попадает под влияние гравитационного притяжения Юпитера, что заставляет его двигаться с возрастающей скоростью по нисходящей дуге, развёрнутой направо к поверхности Юпитера, как показано на рис. 6.1 аи б. Если вы проигрываете плёнку с этим движением в обратном направлении, теннисный мяч будет двигаться по дуге, которая развёрнута вверх и налево от Юпитера, как на рис. 6.1 в.