Шрифт:
В конце 1800-х гг. Максвелл понял, что электричество и магнетизм, хотя они некогда воспринимались как две совершенно разные силы, на самом деле являются различными составляющими одной и той же — электромагнитной силы (см. главу 3). Его труд показал, что электричество и магнетизм дополняют друг друга; они представляют собой инь и ян более симметричного единого целого. Глэшоу, Салам и Вайнберг открыли следующую главу в этой истории объединения. Они поняли, что до того, как возник океан Хиггса, не только все частицы сил имели одинаковую массу — нуль, — но и фотоны, и W- и Z-частицы были идентичны ещё и в существенно другом смысле. {122} Точно так же, как снежинка не меняется при поворотах, которые меняют местами положения её лучей, физические процессы в отсутствие океана Хиггса не будут меняться при взаимозаменах частиц электромагнитных и слабых ядерных сил — при определённых взаимных заменах фотонов и W- и Z-частиц. И так же, как нечувствительность снежинки к поворотам является выражением симметрии (вращательной симметрии), нечувствительность к заменам частиц, переносящих взаимодействия, также отражает симметрию, которая по техническим причинам называется калибровочной симметрией. Она имеет глубокие следствия. Поскольку эти частицы являются переносчиками соответствующих сил, симметрия между ними означает, что имеется симметрия и между силами. Следовательно, при достаточно высокой температуре, при такой температуре, которая испарила бы сегодняшний заполненный полем Хиггса вакуум, нет различия между слабой ядерной силой и электромагнитной силой. То есть при достаточно высокой температуре океан Хиггса испаряется; когда это происходит, испаряется и разница между слабыми ядерными и электромагнитными силами.
Глэшоу, Вайнберг и Салам обобщили открытие Максвелла столетней давности, показав, что электромагнитные силы и слабые ядерные силы на самом деле являются частью одной и той же силы. Они объединилиописание этих двух сил в то, что сейчас называется электрослабойсилой.
Симметрия между электромагнитными и слабыми ядерными силами не проявляется сегодня, поскольку при охлаждении Вселенной возник Хиггсов океан и, что существенно, фотоны и W- и Z-частицы взаимодействуют с конденсированным полем Хиггса по-разному. Фотоны проносятся через океан Хиггса так же легко, как второсортный киноартист легко прошёл бы сквозь папарацци, и поэтому остаются безмассовыми. Однако W- и Z-частицы, как Билл Клинтон и Мадонна, с трудом прокладывают себе путь, приобретая массы в 86 и 97 масс протона соответственно. (Замечание: Эта аналогия не соблюдает масштабы.) Вот почему электромагнитные силы и слабые ядерные силы столь различны в мире вокруг нас. Фундаментальная симметрия между ними «нарушена» или скрыта океаном Хиггса.
Это действительно результат, захватывающий дух. Две силы, которые выглядят совсем разными при сегодняшних температурах, — электромагнитная сила, отвечающая за свет, электричество и магнитное взаимодействие, и слабая ядерная сила, отвечающая за радиоактивный распад, — на фундаментальном уровне являются частью одной и той же силы и становятся различными только вследствие ненулевого поля Хиггса, скрывающего симметрию между ними. Таким образом, то, о чём мы обычно думаем как о пустом пространстве (как о вакууме, о пустоте), играет центральную роль в проявлении вещей в мире такими, какие они есть. Только при испарении вакуума, при достаточно высокой температуре, когда поле Хиггса испаряется, т. е. приобретает нулевое среднее значение во всём пространстве, полная симметрия, лежащая в основании законов природы, стновится явной.
Когда Глэшоу, Вайнберг и Салам разработали эти идеи, W- и Z-частицы ещё не были открыты экспериментально. Только сильная вера этих физиков в силу теории и красоту симметрии дала им уверенность для продвижения вперёд. Их отвага увенчалась успехом. Через некоторое время W- и Z-частицы были открыты, и электрослабая теория была подтверждена экспериментально. Глэшоу, Вайнберг и Салам разглядели за тем, что лежит на поверхности, — проникли взором сквозь туман пустоты — проявление глубокой и тонкой симметрии, охватывающей две из четырёх сил природы. В 1979 г. им была присуждена Нобелевская премия за успешное объединение слабых ядерных сил и электромагнетизма.
Великое объединение
Когда я был студентом первого курса в колледже, я часто встречался с моим руководителем, физиком Говардом Джорджи. Обычно мне было нечего ему сказать, но это практически и не требовалось. Всегда было что-то, чем Джорджи хотелось поделиться с заинтересованными студентами. Как-то раз Джорджи был особенно возбуждён, и он быстро и воодушевлённо говорил в течение часа, несколько раз заполнив доску символами и уравнениями. Всё это время я с энтузиазмом кивал головой. Но, откровенно говоря, я не понял ни слова. Годами позже я осознал, что Джорджи говорил мне о планах проверки его открытия, которое было названо великим объединением.
Великое объединение ставит вопрос, который естественным образом следует из успеха электрослабого объединения: если две силы природы в ранней Вселенной являлись частью единого целого, то может ли быть, что при ещё более высоких температурах и в ещё более ранние времена совершенно аналогично могут испариться различия между тремя или, возможно, всеми четырьмя силами, создав ещё большую симметрию? Это приводит к интригующей возможности, что на самом деле может быть существует одна единственная фундаментальная сила природы, которая через серию космологических фазовых переходов выкристаллизовалась в четыре кажущиеся различными силы, которые нам известны в настоящее время. В 1974 г. Джорджи й Глэшоу предложили первую теорию, позволяющую пройти часть пути до полного единства. Их теория великого объединениявместе с более поздними результатами Джорджи, Хелен Куинн и Вайнберга предполагала, что три из четырёх сил — сильные, слабые и электромагнитные — являлись частью единой силы, когда температура превышала 10 млрд млрд млрд (10 28) градусов, — в несколько тысяч миллиардов миллиардов раз больше температуры в центре Солнца, — это экстремальные условия, которые существовали через 10 – 35с после Большого взрыва. Выше этой температуры, предположили эти физики, фотоны, глюоны сильного взаимодействия, точно так же, как W- и Z-частицы, можно было свободно заменять друг на друга — это более сильная калибровочная симметрия, чем в электрослабой теории, — без каких-либо наблюдаемых последствий. Джорджи и Глэшоу, таким образом, предположили, что при таких высоких энергиях и температурах имеется полная симметрия между тремя видами частиц — переносчиков негравитационных сил, и потому имеется полная симметрия среди трёх негравитационных сил. {123}
Теория великого объединения Глэшоу и Джорджи также говорит, что мы не наблюдаем эту симметрию в мире вокруг нас, — сильные ядерные силы, которые удерживают вместе протоны и нейтроны в атомных ядрах, кажутся совершенно отличными от слабых или электромагнитных сил, — поскольку, когда температура упала ниже 10 28градусов, в игру вступил другой вид поля Хиггса. Это поле Хиггса называется полем Хиггса великого объединения (или, коротко, Хиггсом великого объединения). (Всякий раз, когда названия могут привести к путанице, поле Хиггса, относящееся к электрослабому объединению, называется электрослабым Хиггсом). Аналогично случаю его электрослабого родственника, Хиггс великого объединения сильно флуктуирует при температуре выше 10 28градусов, но расчёты предполагают, что он конденсируется в ненулевую величину, когда Вселенная охлаждается ниже этой температуры. И, как и с электрослабым Хиггсом, когда возник этот Хиггсов океан великого объединения, Вселенная прошла через фазовый переход с сопровождающим его понижением симметрии. В этом случае, поскольку океан Хиггса великого объединения оказывает различное влияние на глюоны и на другие частицы, сильное взаимодействие отщепилось от электрослабого взаимодействия, создав две различающиеся негравитационные силы там, где раньше была одна. Через крошечную долю секунды, после падения температуры ещё на миллиарды и миллиарды градусов, сконденсировался электрослабый Хиггс, заставив разделиться слабые и электромагнитные силы.
В то время как идея великого объединения красива, она (в отличие от электрослабого объединения) не подтверждена экспериментально. Тем не менее оригинальное предположение Джорджи и Глэшоу предсказывает некий остаточный след этой ранней симметрии Вселенной, который должен быть заметен и сегодня. Это следствие состоит в том, что протоны иногда могут превращаться в другие виды частиц (такие как антиэлектроны и частицы, известные как пионы). Но за многие годы тщательных поисков такого распада протона в сложных подземных экспериментах — именно такой эксперимент Джорджи возбуждённо описывал мне в своём кабинете годы назад — ничего не было найдено; это исключает оригинальное предложение Джорджи и Глэшоу. Однако с тех пор физики разработали вариации этой оригинальной модели, которые ещё не перечёркнуты такими экспериментами; однако ни одна из этих альтернативных теорий пока не подтверждена.