Шрифт:
Конечно, бывают ситуации, в которых движение кажется абсолютным, когда вы чувствуете его и можете заявить, не опираясь на сравнение с чем-то внешним, что вы определённо двигаетесь. Так бывает в случае ускоренногодвижения, при котором меняется величина скорости и/или её направление. Если лодка внезапно кренится, замедляет свой ход или ускоряется, либо меняет направление движения на излучине реки, либо попадает в водоворот и начинает вращаться, вы точно знаете, что вы двигаетесь. И вы осознаёте это, не глядя по сторонам и не сравнивая своё положение с положением какого-либо предмета вне лодки, выбранного за точку отсчёта. Даже если ваши глаза закрыты, вы знаете, что двигаетесь, потому что чувствуете это. Таким образом, хотя вы не можете почувствовать движение с постоянной скоростью в неизменном направлении — движение с постоянным вектором скорости, как его называют, — однако вы можете почувствовать изменениясвоей скорости.
Но если вы чуть призадумаетесь, то заметите нечто странное во всём этом. Что такого особенного в изменениях скорости, что позволяет их выделять и придавать им некий внутренний смысл? Если скорость имеет смысл лишь при сравнении — если вы говорите, что что-то движется, то надо указывать по отношению к чему— то почему выходит, что с изменениями скорости дело обстоит совсем по-другому, и не надо проводить никаких сравнений? Фактически, не может ли оказаться, что на самом делетребуется какое-то сравнение? Не может ли быть так, что некое неявное или скрытое сравнение происходит всякий раз, когда мы ссылаемся на ускоренное движение или ощущаем его? Нас сейчас интересует этот центральный вопрос, поскольку, как это ни может показаться удивительным, он касается глубочайших проблем понимания пространства и времени.
Прозрение Галилея, касающееся движения, в особенности его утверждение о том, что сама Земля движется, навлекло на него гнев инквизиции. Стремясь избежать похожей участи, более острожный Декарт в своих «Началах философии» облёк своё понимание движения в уклончивую формулировку, которая примерно тридцать лет спустя не смогла устоять под испытующим взглядом Ньютона. Декарт говорил, что объекты сопротивляются изменению своего состояния движения: неподвижный объект будет оставаться неподвижным, пока кто-то или что-то не вынудит его двигаться; объект, движущийся с постоянной скоростью по прямой линии, всегда и будет так двигаться, если кто-то или что-то не вынудит его изменить скорость или свернуть с прямой линии. Но что, — спросил Ньютон, — в действительности означают эти понятия «неподвижности» или «движения с постоянной скоростью по прямой линии»? Неподвижность или постоянная скорость с чьей точки зрения? Если скорость не постоянна, то по отношению к чему или с чьей точки зрения она не постоянна? Декарт сознательно опустил наиболее тонкие аспекты смысла движения, но Ньютон понял, что ключевые вопросы остались без ответа.
Ньютон — человек, столь неистовый в поисках истины, что однажды, изучая анатомию глаза, воткнул себе тупую иглу между глазным яблоком и углублением в кости, а позже, будучи директором Монетного двора, послал на виселицу более сотни фальшивомонетчиков — не мог потерпеть сомнительных или неполных объяснений. Поэтому он решил прояснить суть дела. Это привело его к рассмотрению ведра с водой. {7}
Ведро
Итак, ведро с водой вращается, и поверхность воды принимает вогнутую форму. Ньютон поставил следующий вопрос: почемуповерхность воды принимает эту форму? Потому что вода вращается, — ответите вы, — и подобно тому, как мы вдавливаемся в боковую стенку машины, когда автомобиль делает резкий поворот, так и вращающаяся вода испытывает давление со стороны стенок ведра; и воде ничего не остаётся, как приподняться вверх. Это здравое рассуждение, но оно не отвечает на суть вопроса Ньютона. Ньютон хотел бы понять, что это значит, когда говорят, что вода вращается: вращается по отношению к чему? Ньютон подошёл к самой сути движения и был далёк от того, чтобы принять утверждение, что ускоренное движение, такое как вращение, не требует никаких сравнений с чем-то внешним. [2]
2
Для описания вращательного движения иногда используют понятия центробежнойи центростремительнойсилы. Но это всего лишь термины, а мы хотим понять, почему вращательное движение вызывает силу.
Было бы естественным взять само ведро в качестве системы отсчёта, т. е. говорить о движении воды по отношению к ведру. Но, как заметил Ньютон, такой подход ничего не объясняет. Действительно, в самом начале, когда мы отпускаем ведро, между ним и водой есть относительноедвижение, поскольку вода не начинает сразу же двигаться вместе с ведром. При этом поверхность воды остаётся плоской. Затем, когда вода увлекается ведром и начинает вращаться вместе с ним, уже нет относительногодвижения между ними, но поверхность воды принимает вогнутуюформу. Так что, приняв в качестве системы отсчёта ведро, мы приходим к прямо противоположному результату, чем тот, что можно было бы ожидать: когда есть относительное движение, поверхность воды плоская; а когда относительного движения нет, поверхность — вогнутая.
Посмотрим, что будет дальше с ведром Ньютона. Поскольку ведро продолжает вращаться, то верёвка снова закрутится (теперь уже в другом направлении) и постепенно остановит ведро; затем в какой-то момент ведро на мгновение замрёт, тогда как вода в нём будет продолжать вращаться. В этот момент относительное движение между водой и ведром будет тем же самым, каким оно было в самом начале эксперимента (за исключением несущественной разницы в направлении вращения: по или против часовой стрелки), но форма поверхности воды будет другой(теперь она вогнутая, тогда как раньше была плоской). Это лишний раз доказывает, что с помощью относительного движения ведра и воды нельзя объяснить форму поверхности воды.
Отвергнув ведро в качестве подходящей системы отсчёта для описания движения воды, Ньютон сделал следующий смелый шаг. Вообразите, — предложил он, — похожий эксперимент, проводимый в совершенно пустом космосе. Мы не сможем провести точно такой же эксперимент, поскольку форма поверхности воды зависит и от земного притяжения, отсутствующего в новом эксперименте. Поэтому вообразим громадное ведро — размерами с развлекательный аттракцион, — дрейфующее во тьме пустого космического пространства, и представим, что некий бесстрашный астронавт, Гомер [3] , пристёгнут внутри к стенке этого ведра. (В действительности, Ньютон использовал не этот пример; он рассматривал два камня, связанные верёвкой, но суть дела от этого не меняется.) Индикатором вращения ведра (аналогом того, как воду прижимало к стенкам, из-за чего её поверхность становилась вогнутой) будет служить то, что Гомер будет чувствоватьсилу, вдавливающую его во внутреннюю стенку ведра, из-за чего натянется кожа его лица, живот несколько вдавится, и волосы вытянутся по направлению к стенке ведра. И вот вопрос: в полностьюпустом пространстве — где нет ни Солнца, ни Земли, ни воздуха, ни пончиков, ни чего-либо ещё — что могло бы послужить тем ориентиром, по отношению к которому вращается ведро? Поначалу, поскольку мы вообразили совершенно пустое пространство, в котором нет ничего, кроме ведра и его содержимого, можно сделать вывод, что просто нет ничего, что послужило бы таким ориентиром. Ньютон не согласился с этим.
3
Гомер Симпсон — ещё один персонаж мультсериала о семейке Симпсонов, отец ранее упомянутого Барта. Гомер назван здесь «бесстрашным астронавтом» с большой дозой иронии — в «мультипликационной жизни» он совсем не такой. (Прим. перев.)
В качестве подходящей системы отсчёта он выбрал первоисходное вместилище — само пространство. Он выдвинул прозрачную пустую арену, на которой все мы находимся и на которой происходит всякое движение, в качестве реальной, физической сущности, которую он назвал абсолютным пространством. {8} Мы не можем прикоснуться к абсолютному пространству или ощутить его с помощью своих органов чувств, но, тем не менее, Ньютон заявил, что абсолютное пространство есть нечто. Это есть то, что даёт самую правильную систему отсчёта для описания движения. Объект по-настоящему неподвижен, если он неподвижен по отношению к абсолютному пространству. Объект по-настоящему движется, если он движется по отношению к абсолютному пространству. И, самое главное, как заключил Ньютон, объект по-настоящему ускоряется, если он ускоряется по отношению к абсолютному пространству.