Вход/Регистрация
Учебное пособие по курсу «Нейроинформатика»
вернуться

Миркес Е. М.

Шрифт:

В этой главе рассматриваются основные структуры и функции компонента задачник. Отметим, что задачник рассматривается только с точки зрения его использования нейронной сетью. Совершенно очевидно, что невозможно предусмотреть всех вариантов интерфейса между пользователем и задачником. Действительно, было бы странно, если бы в одном и том же интерфейсе обрабатывались задачники, содержащие только числовые поля, задачники, содержащие исключительно графическую информацию и задачники смешанного типа.

Структуры данных задачника

С точки зрения нейрокомпьютера задачник представляет собой прямоугольную таблицу, поля которой содержат информацию о входных данных примеров задачи, правильные ответы и другую информацию. На данный момент существует три основных способа хранения однотипных данных — базы данных, электронные таблицы, текстовые файлы. Основными критериями выбора являются удобство в использовании, компактность и универсальность. Поскольку задачник должен хранить однотипные данные и предоставлять их для обработки другим компонентам нейрокомпьютера, а не производить вычисления, то функционально задачник должен являться базой данных. Наиболее подходящим кажется формат табличных (реляционных) баз данных.

В современных операционных системах предусмотрены различные способы обмена данными между приложениями (устройства, передающие информацию с датчиков, так же будем считать приложениями). Наиболее универсальным является обмен в символьном формате. Вопрос конкретной реализации обмена выходит за рамки данной работы, поскольку это чисто технический вопрос. Вне зависимости от того, каким путем и из какого приложения данные попали в задачник, их представление должно быть одинаковым (принятым в данной реализации задачника). То есть, откуда бы не получал данные задачник, остальные компоненты нейрокомпьютера всегда получают данные от задачника в одном и том же виде. Этот вид зафиксирован в приложении при описании стандарта компонента задачник.

Поля задачника

Далее будем полагать, что задачник является реляционной базой данных из одной таблицы или набора параллельных таблиц. Каждому примеру соответствует одна запись базы данных. Каждому данному — одно поле. В данном разделе рассмотрены допустимые типы полей, с точки зрения типа хранящихся в них данных. В разд. «Состав данных задачника» все поля разбиваются по смысловой нагрузке. Все поля базы данных можно разбить на четыре типа — числовые поля, текстовые поля, перечислимые поля и поля типа рисунок.

Числовые поля. Поля числовых типов данных integer, long и real (см. раздел «Стандарт типов данных» в приложении) предназначены для хранения различных чисел. Поля числового типа могут нести любую смысловую нагрузку.

Перечислимые поля. Поля перечислимого типа служат для хранения качественных признаков — полей базы данных, содержащих, как правило, текстовую информацию, но имеющих малое число различных значений. Простейшим примером поля перечислимого типа является поле «пол» — это поле может принимать только два значения — «мужской» или «женский». Поле перечислимого типа не хранит соответствующего текстового значения, вместо него в поле содержится номер значения. Поля перечислимого типа могут быть только входными данными, комментариями или ответами.

Строки (текстовые поля). Поля текстового типа предназначены для хранения тестовой информации. Они могут быть только комментариями.

Рисунок. Поля типа рисунок предназначены для хранения графической информации. В данной работе не устанавливается способ хранения полей типа рисунок. В приложении оговаривается только способ хранения полей типа рисунок на диске для файлов задачника, созданного в нейрокомпьютере. При передаче рисунков предобработчику используется формат, согласованный для предобработчика и задачника.

Состав данных задачника

Компонент задачник является необходимой частью нейрокомпьютера вне зависимости от типа применяемых в нем нейронных сетей. Однако в зависимости от решаемой задачи содержимое задачника может меняться. Так, например, для решения задачи классификации без учителя используют нейросети, основанные на методе динамических ядер [224, 262] (наиболее известным частным случаем таких сетей являются сети Кохонена [131, 132]). Задачник для такой сети должен содержать только массивы входных данных и предобработанных входных данных. При использовании обучаемых сетей, основанных на принципе двойственности, к задачнику необходимо добавить массив ответов сети. Кроме того, некоторые исследователи хотят иметь возможность просмотреть ответы, выданные сетью, массив оценок примера, показатели значимости входных сигналов и, возможно, некоторые другие величины. Поэтому, стандартный задачник должен иметь возможность предоставить пользователю всю необходимую информацию.

Цвет примера и обучающая выборка

Довольно часто при обучении нейронных сетей возникает необходимость использовать в обучении не все примеры задачника, а только часть. Например, такая возможность необходима при использовании метода скользящего контроля для оценки качества обучения сети. Существует несколько способов реализации такой возможности. Кроме того, часто бывает полезно приписать примерам ряд признаков. Так, при просмотре задачника, пользователю полезно видеть степень обученности примера (например, отображать зеленым цветом примеры, которые решаются сетью идеально, желтым — те, которые сеть решает правильно, но не идеально, а красным — те, при решении которых сеть допускает ошибки).

  • Читать дальше
  • 1
  • ...
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: