Вход/Регистрация
Учебное пособие по курсу «Нейроинформатика»
вернуться

Миркес Е. М.

Шрифт:

Таким образом, при определенном ответе уровень уверенности показывает, насколько ответ далек от неопределенного, а в случае неопределенного ответа — насколько он далек от определенного.

2. Кодирование номером канала. Максимальный интерпретатор. Максимальный интерпретатор в качестве номера класса выдает номер нейрона, выдавшего максимальный сигнал. Для такого интерпретатора в качестве уровня уверенности естественно использовать некоторую функцию от разности между максимальным и вторым по величине сигналами. Для этого потребуем, чтобы при обучении для всех примеров обучающего множества разность между максимальным и вторым по величине сигналами была не меньше уровня надежности e. В этом случае уровень уверенности вычисляется по следующей формуле: R=max{1,(αi– αj)/e}, где αi — максимальный, а αj — второй по величине сигналы.

3. Двоичный интерпретатор. Уровень надежности для двоичного интерпретатора вводится так же, как и для знакового интерпретатора при кодировании номером канала.

4. Порядковый интерпретатор. При использовании порядкового интерпретатора в качестве уровня уверенности естественно брать функцию от разности двух соседних сигналов в упорядоченном по возрастанию векторе выходных сигналов. Для этого потребуем, чтобы при обучении для всех примеров обучающего множества в упорядоченном по возрастанию векторе выходных сигналов разность между двумя соседними элементами была не меньше уровня надежности e. В этом случае уровень уверенности можно вычислить по формуле

, причем вектор выходных сигналов предполагается отсортированным по возрастанию.

В заключение заметим, что для ответа типа число, ввести уровень уверенности подобным образом невозможно. Пожалуй, единственным способом оценки достоверности результата является консилиум нескольких сетей — если несколько сетей обучены решению одной и той же задачи, то в качестве ответа можно выбрать среднее значение, а по отклонению ответов от среднего можно оценить достоверность результата.

Построение оценки по интерпретатору

Если в качестве ответа нейронная сеть должна выдать число, то естественной оценкой является квадрат разности выданного сетью выходного сигнала и правильного ответа. Все остальные оценки для обучения сетей решению таких задач являются модификациями данной. Приведем пример такой модификации. Пусть при составлении задачника величина

, являющаяся ответом, измерялась с некоторой точностью e. Тогда нет смысла требовать от сети обучиться выдавать в качестве ответа именно величину
. Достаточно, если выданный сетью ответ попадет в интервал
. Оценка, удовлетворяющая этому требованию, имеет вид:

Эту оценку будем называть оценкой числа с допуском e.

Для задач классификации также можно пользоваться оценкой типа суммы квадратов отклонений выходных сигналов сети от требуемых ответов. Однако, эта оценка плоха тем, что, во-первых, требования при обучении сети не совпадают с требованиями интерпретатора, во-вторых, такая оценка не позволяет оценить уровень уверенности сети в выданном ответе. Достоинством такой оценки является ее универсальность. Опыт работы с нейронными сетями, накопленный красноярской группой НейроКомп, свидетельствует о том, что при использовании оценки, построенной по интерпретатору, в несколько раз возрастает скорость обучения.

Для оценок, построенных по интерпретатору потребуется следующая функция оценки

и ее производная

Рассмотрим построение оценок по интерпретатору для четырех рассмотренных в предыдущем разделе интерпретаторов ответа.

1. Кодирование номером канала. Знаковый интерпретатор. Пусть для рассматриваемого примера правильным ответом является k-ый класс. Тогда вектор выходных сигналов сети должен удовлетворять следующей системе неравенств:

где e — уровень надежности.

Оценку, вычисляющую расстояние от точки a в пространстве выходных сигналов до множества точек, удовлетворяющих этой системе неравенств, можно записать в виде:

Производная оценки по i-му выходному сигналу равна

2. Кодирование номером канала. Максимальный интерпретатор. Пусть для рассматриваемого примера правильным ответом является k-ый класс. Тогда вектор выходных сигналов сети должен удовлетворять следующей системе неравенств: αk– e≥αi при i≠k. Оценкой решения сетью данного примера является расстояние от точки a в пространстве выходных сигналов до множества точек, удовлетворяющих этой системе неравенств. Для записи оценки, исключим из вектора выходных сигналов сигнал αk, а остальные сигналы отсортируем по убыванию. Обозначим величину αk– e через β0, а вектор отсортированных сигналов через β1≥β2≥…≥βN– 1. Система неравенств в этом случае приобретает вид β0≥βi, при i>1. Множество точек удовлетворяющих этой системе неравенств обозначим через D. Очевидно, что если β0≥β1, то точка b принадлежит множеству D. Если β0<β1, то найдем проекцию точки b на гиперплоскость β0=β1. Эта точка имеет координаты

Если

, то точка β¹ принадлежит множеству D. Если нет, то точку b нужно проектировать на гиперплоскость β0=β1=β2. Найдем эту точку. Ее координаты можно записать в следующем виде (b,b,b,β3,…,βN– 1). Эта точка обладает тем свойством, что расстояние от нее до точки b минимально. Таким образом, для нахождения величины b достаточно взять производную от расстояния по b и приравнять ее к нулю:

Из этого уравнения находим b и записываем координаты точки β²:

Эта процедура продолжается дальше, до тех пор, пока при некотором l не выполнится неравенство

или пока l не окажется равной N–1. Оценкой является расстояние от точки b до точки

  • Читать дальше
  • 1
  • ...
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: