Миркес Е. М.
Шрифт:
Все программы, кроме программы Hopfield.
При выполнении этого теста каждый пример обучающего множества искажается при помощи Инвертирующего шума с уровнем, заданным при помощи пункта Задать параметры теста, и предъявляется нейронной сети для распознавания. С каждым примером эта процедура проделывается заданное (см. Задать параметры теста) число раз. Результаты теста отображаются в таблице результатов. Если Вас интересует, какое число ошибок было сделано при предъявлении каждого примера обучающего множества, то Вам необходимо выйти из режима тестирования и просмотреть обучающее множество. В поле «Оценка» отображается доля правильных ответов на каждый пример. Необходимо помнить, что эти данные отражают результаты только ПОСЛЕДНЕГО теста!
Все программы, кроме программы Hopfield.
При выполнении этого теста каждый пример обучающего множества искажается при помощи Гасящего шума с уровнем, заданным при помощи пункта Задать параметры теста, и предъявляется нейронной сети для распознавания. С каждым примером эта процедура проделывается заданное (см. Задать параметры теста) число раз. Результаты теста отображаются в таблице результатов. Если Вас интересует, какое число ошибок было сделано при предъявлении каждого примера обучающего множества, то Вам необходимо выйти из режима тестирования и просмотреть обучающее множество. В поле «Оценка» отображается доля правильных ответов на каждый пример. Необходимо помнить, что эти данные отражают результаты только ПОСЛЕДНЕГО теста!
Все программы, кроме программы Hopfield.
При исполнении этого пункта у Вас последовательно запрашиваются "Число искажений на пример" — сколько различных экземпляров искажений каждого примера будет предъявляться сети для распознавания; "Уровень добавляющего шума" — для Статистического теста с добавляющим шумом (см. Добавляющий шум); "Уровень инвертирующего шума" — для Статистического теста с инвертирующим шумом (см. Инвертирующий шум); "Уровень гасящего шума" — для Статистического теста с гасящим шумом (см. Гасящий шум).
Все программы, кроме программы Hopfield.
Этот пункт позволяет сохранить на диске точную копию Экрана статистического теста. Отметим, что информация о доле правильных ответов на каждый пример, отображаемая в поле «Оценка» обучающего множества НЕ СОХРАНЯЕТСЯ!
Все программы, кроме программы Hopfield.
При выполнении этого пункта с диска считывается сохраненная при помощи пункта Сохранить результаты на диске тестовая информация. Отметим, что информация о доле правильных ответов на каждый пример, отображаемая в поле «Оценка» обучающего множества НЕ СОХРАНЯЕТСЯ на диске, и при чтении НЕ ВОССТАНАВЛИВАЕТСЯ!
Все программы, кроме программы Hopfield.
Исполнение этого пункта приводит к потере текущей тестовой информации, и очистке полей данных тестов на Экране статистического теста. Если Вы хотите сохранить результаты теста на диске, то воспользуйтесь пунктом Сохранить результаты на диске.
Все программы, кроме программы Hopfield.
Исполнение этого пункта приводит к выходу из статистического теста. При этом результаты теста сохраняются до проведения другого тестирования или выхода из программы. Если Вы хотите сохранить результаты теста на диске, то воспользуйтесь пунктом Сохранить результаты на диске.
Приложение 3.
Стандарт нейрокомпьютера
В этом приложении описаны стандарты двух уровней. Стандарт первого уровня это стандарт на языки описания всех компонентов нейрокомпьютера, за исключением компонента исполнитель. Компонент исполнитель не имеет стандарта первого уровня в следствие своей универсальности. Стандарт второго уровня — описание запросов, выполняемых каждым компонентом. Структура приложения. В первой части приложения описаны общие для всех компонентов элементы стандарта. В каждой следующей части описывается стандарт первого или второго уровня для каждого компонента.
Общий стандарт
Этот раздел содержит описание элементов стандарта, общих для всех компонентов нейрокомпьютера.
Стандарт типов данных
При описании запросов, структур данных, стандартов компонентов нейрокомпьютера необходимо использовать набор первичных типов данных. Поскольку в разных языках программирования типы данных называются по-разному, введем единый набор обозначений для них.
Таблица 1. Типы данных для всех компонентов нейрокомпьютера