Вход/Регистрация
Журнал «Компьютерра» № 20 от 30 мая 2006 года
вернуться

Журнал Компьютерра

Шрифт:

При квантовом подходе одну и ту же частицу можно описывать двумя разными способами: как частицу с некоторой массой и как волну с некоторой длиной. Единая частица-волна описывается не своим положением в пространстве, а волновой функцией (обычно обозначаемой как y), и ее местонахождение имеет вероятностную природу – вероятность обнаружить частицу в данной точке x в данное время t равна | ? (x,t)|^2 .

Как же описывать движение частиц? Какие законы предсказывают эволюцию волновой функции с течением времени? В классической механике движение осуществляется по принципу наименьшего действия. Для данной механической системы можно построить функцию (называемую лагранжианом), минимизация интеграла от которой и дает предсказание поведения системы – траектории движущихся тел. В квантовой механике понятие «траектория» теряет смысл, но понятие лагранжиана сохраняется, и с его помощью можно предсказать поведение волновых функций взаимодействующих частиц.

Возникает вопрос: каким образом учитывать поля квантовой системы при построении этого самого лагранжиана? Ответ на этот вопрос дают так называемые квантовые теории поля. Множественное число не случайно: лагранжиан можно строить разными способами, дело лишь в том, какой из них лучше описывает реальность.

Вернемся к волновым функциям. При измерении вероятность найти частицу в данной точке равна квадрату модуля волновой функции. Значит, функцию можно умножить на любое комплексное число с единичным модулем (сдвинуть фазу), и ничего не изменится: вероятность нахождения частицы в каждой конкретной точке останется точно такой же. Фактически конкретный вид волновой функции нам никогда не узнать, да он нас и не интересует; зато очень интересно, какие операции можно произвести над волновой функцией так, чтобы свойства системы не изменились.

Аналогично, лагранжиан вообще лучше всего характеризовать теми преобразованиями, которые он «выдерживает», – то есть при которых свойства системы не изменяются. Например, сдвиг фазы выдерживает лагранжиан, который описывает поведение одного электрона.

Совокупность таких преобразований в математике называют группой. Группы играют фундаментальную роль в разных областях знания – это язык, на котором в современной науке формулируется понятие симметрии. Группа преобразований, которая появилась в примере с электроном, носит название калибровочной группы. В математике ее обозначают U(1), и она очень проста – обычная окружность на плоскости (совокупность всех поворотов вокруг начала координат). Аналогичные теории для сильного и слабого взаимодействия приводят к более сложным калибровочным группам SU(3) и SU(2) (последняя эквивалентна трехмерной сфере, лежащей в четырехмерном пространстве).

Чтобы добраться до квантовых теорий Янга-Миллса, осталось сделать два важных шага. Первый шаг заключается в том, чтобы требования глобальной инвариантности дополнить требованиями локальной инвариантности. В предыдущем примере на число с единичным модулем нужно было умножать всю функцию сразу. Но ничего не изменилось бы, если бы это умножение произошло не во всем пространстве, а в какой-то его части. В математике это называется переходом от групп глобальных преобразований к группам локальных преобразований.

Второй принципиальный момент заключается в том, что в теориях Янга-Миллса приходится использовать так называемые неабелевы группы преобразований. Из-за этого нарушается принцип суперпозиции: если на частицу действуют несколько полей сразу, их совокупный эффект уже нельзя разложить на действие каждого из них поодиночке. Так получается потому, что в этой теории друг к другу притягиваются не только частицы материи, но и сами силовые линии поля! Из-за этого уравнения становятся нелинейными и весь арсенал математических приёмов для решения линейных уравнений к ним применить нельзя. Поиск решений и даже доказательство их существования становятся несравнимо более сложной задачей.

Янг и Миллс предложили общий вид лагранжианов, которые должны были привести к успеху. На основе теории Янга-Миллса сначала были объединены электрическая и слабая теории, а затем Мюррей Гелл-Манн (Murray Gell-Mann) построил теорию сильного взаимодействия. В этой теории, принесшей Гелл-Манну Нобелевскую премию, для объяснения наблюдаемых эффектов появились кварки – частицы с дробным электрическим зарядом, из которых состоят протоны, нейтроны и другие вовсе не элементарные частицы. Теория сильного взаимодействия получила название квантовой хромодинамики[Термин «хромодинамика» может показаться странным – какой может быть цвет (греческое chroma – цвет, краска) у элементарных частиц? Тем не менее свойства элементарных частиц порой носят неожиданные названия. Кварки, например, делятся на шесть типов, которые принято называть ароматами; ароматы отличаются квантовыми числами, среди которых не только заряд, но и странность и очарование. А цвет – это характеристика не только кварков, но и глюонов – частиц, которые, по мнению физиков, реализуют взаимодействие между кварками. У них еще и антицвет бывает, но в это мы углубляться не будем].

Чтобы теория могла описывать сильное взаимодействие, она должна обладать тремя свойствами, которые совершенно не свойственны классическим теориям:

mass gap («щель в спектре масс», ограничение снизу на «энергетический спектр»);

кварковый конфайнмент: кварки не могут «выбраться» за пределы элементарных частиц;

определенные нарушения симметрии (подробности здесь опускаем).

Многочисленные эксперименты – как in vivo, так и in silicio["In vivo" означает «в живом» – это стандартный биологический термин для экспериментов в живой природе, а не в искусственных средах. Однако в последние десятилетия стали все более популярны компьютерные эксперименты. Для их обозначения биологи придумали меткий термин «in silicio» – «в кремнии»] – показали, что квантовая хромодинамика этими свойствами обладает. Однако математически это не доказано. Математически строгое построение квантовой теории поля, обладающей этими свойствами, и составляет предмет нашей сегодняшней задачи на миллион[Говоря более строгим языком, задача состоит в том, чтобы для каждой компактной простой калибровочной группы построить квантовую теорию Янга-Миллса в четырехмерном пространственно-временном континууме, обладающую свойством mass gap, – иными словами, такую теорию, спектр гамильтониана H которой (в квантовом случае аналог классического лагранжиана называется гамильтонианом) был бы отделен от нуля].

Впрочем, главной целью исследований в этой области, выходящей за рамки любых конкурсов, является, конечно, общая теория поля – универсальное математическое описание всех процессов, происходящих в нашей Вселенной. Достигнет ли теоретическая физика этой поистине грандиозной цели в XXI веке – покажет только время.

Редакция благодарит:

Игоря Иванова (elementy.ru/blogs/ users/spark), физика-теоретика, специалиста по физике элементарных частиц, – за консультации; Джо Андерсона (Joe Anderson), директора Библиотеки Нильса Бора Центра истории физики Американского института физики, – за предоставление редкого снимка Ч. Янга и Р. Миллса; Дерека Лайнвебера (Derek Leinweber) из Университета Аделаиды – за иллюстративный материал по квантовой хромодинамике.

  • Читать дальше
  • 1
  • ...
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: