Вход/Регистрация
Открытие Вселенной - прошлое, настоящее, будущее
вернуться

Потупа Александр

Шрифт:

Переходя от более или менее понятной эпохи адронного синтеза к все более ранним временам, мы попадаем в неопределенное положение. Можно, разумеется, верить, что ничего особенного в эти более ранние эпохи не происходит — вся материя остается очень концентрированным и горячим кварк-лептон-фотонным газом. Можно ожидать, что в какие-то моменты важную роль сыграют неоткрытые пока элементарные частицы. Иными словами, от вещества, сжатого до фантастически высоких плотностей, можно ожидать некоторых сюрпризов. Не исключено, что в достаточно ранние моменты кварки и лептоны окажутся далеко не столь элементарными, как они сейчас выглядят на ускорителях.

Но можно верить и в более фундаментальные изменения — структуры пространства-времени в малом. Теоретики заранее разработали несколько красивых схем квантованного пространства, где существенную роль играет новая мировая константа — фундаментальная длина l0. На расстояниях l0 и меньших обычные геометрические представления теряют смысл. Не ясна только пока конкретная величина l0 — никаких ясных экспериментальных данных здесь пока не получено.

Единственное указание общетеоретического характера возвращает нас к планковскому масштабу. Очень трудно поверить, что в огромном интервале от уже исследованных расстояний до lP с пространством-временем ничего особенного не происходит, но не исключено, что поверить придется. По элементарным оценкам гравитационное взаимодействие между частицами на расстояниях порядка lP становится сильным, и рассматривать их движение на фоне пространства-времени с классической геометрией, скорее всего, бессмысленно.

Такого рода ситуация должна иметь место в эпоху t ~ tP, которой соответствуют ни на что привычное не похожие температура ТР ~ 1,4.1032 К и плотность материи P ~ 5,2.1093 г/см3. Двигаться к более ранним моментам и к самой Сингулярности мы уже не имеем права — не ясно даже, как определить ось времени при t меньше tP. Задачу о Вселенной на этом уровне необходимо ставить строго в рамках квантовой теории. И возможно, самое любопытное, что нельзя ставить эту задачу как одночастичную, ограничиваясь уникальной Вселенной. Данное требование естественно для релятивистской квантовой теории, где любые объекты рассматриваются во множественном числе, они размножаются и гибнут в актах взаимодействия. Здесь лежит дорога к пониманию рождения Вселенной в большом, если не бесконечном, наборе миров, каждый из которых реализуется с определенной вероятностью — в общем, к вещам весьма фантастическим…

По-настоящему добраться до планковской области очень и очень трудно, как и построить последовательную квантовую теорию гравитации, чему на протяжении нескольких десятилетий посвящены усилия многих физиков и математиков. Попытки в этом направлении весьма впечатляющи и в некоторых случаях ведут к интересным заключениям, но главное пока впереди.

Полезно остановиться на одном более наглядном сигнале из планковской области, связанном с проблемой интерпретации фундаментальных констант. Возвратимся к G. Мы видели, что гравитационной константе повезло меньше, чем с (скорости света), имеющей совершенно прямую и наглядную интерпретацию. Очень похоже, что такое везение не случайно, а вытекает из непосредственной принадлежности с к планковской системе единиц, где она играет роль фундаментальной скорости, ограничивающей любую скорость передачи информации.

Так вот, из G и с легко образовать новую константу:

LP = c5/2G » 1,8.1059 эрг/с = 1,8.1052 Ватт,

имеющую вполне ясный смысл мощности или светимости, причем, по-видимому, предельной мощности, с помощью которой можно передать информационный сигнал [115] . Важно, что она естественно входит в планковскую систему (как фундаментальная мощность), но не содержит постоянной Планка, то есть может быть замечена в классической теории.

115

Мощность можно оценивать с использованием единиц массы, вводя константу?t МР = LP/с2 = c3/2G? 2.1038 г/с.

Простой обзор светимостей звезд, галактик и квазаров говорит нам о том, что ни один из этих объектов и близко не подходит по светимости к пределу LP. Для типичной звезды Солнца L(~ 3,8.1033 эрг/с характерная светимость галактик и квазаров не превышает 1043–1045 эрг/с. Суммарную светимость всех галактик можно оценить величиной 1055–1056 эрг/с, что все еще в тысячи раз меньше LP. Иными словами, ограничительная роль новой константы выполняется с большим запасом.

Источник, обладающий светимостью LP, способен был бы генерировать за год целую большую галактику (массой около 6,4.1045 г), а за космологический период 15 миллиардов лет массу порядка 1056 г, что заметно превышает оценку суммарной массы галактик во Вселенной.

Ограничительная функция LP хорошо видна при оценке работы некоторого источника. Он излучает в общем случае за счет выгорания собственной массы. В процессе излучения его масса и физический радиус, разумеется, убывают, однако радиус не должен убывать быстрее, чем со скоростью света. С другой стороны, для любого наблюдаемого объекта физический радиус не может стать меньше так называемого гравитационного (Rg= 2GM/c2), который тоже убывает с досветовой скоростью. Последнее утверждение эквивалентно тому, что для светимости любого источника должно выполняться соотношение [116] : L b LP.

116

Непосредственно следует из цепочки неравенств: с r tR r tRg = 2GtM /c2 = 2GL/c4, откуда имеем: L b LP

Ограничения на светимость исчезают в пределе LP " то есть при переходе к нерелятивистской теории (с " ), или при выключении гравитации (G " 0). He следует ли в связи с этим понимать тяготение как универсальный физический механизм ограничения мощности любых процессов?

Пока последовательного ответа на этот вопрос нет, не построен явный пример классической теории гравитации, которая исходила бы из ограничения L b LP столь же естественным образом, как специальная теория относительности исходит из ограничения v b с. Возможно, на пути к такой теории лежат какие-то неизвестные нам явления — все-таки пока мы наблюдаем очень малые по сравнению с LP светимости небесных тел. И это немного напоминает ситуацию перед созданием специальной теории относительности, когда в эксперименте наблюдались скорости объектов, существенно меньшие скорости света. Только открытие электронов, которые из-за очень малой массы легко поддаются ускорению до околосветовых скоростей, дало четкие экспериментальные указания на новые механические закономерности. Не предстоит ли классической теории тяготения пройти сквозь третье рождение в связи с исследованием объектов сопоставимых по светимости с LP?

  • Читать дальше
  • 1
  • ...
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: