Вход/Регистрация
Открытие Вселенной - прошлое, настоящее, будущее
вернуться

Потупа Александр

Шрифт:

Разумеется, было бы нелепо ожидать от планет такого рода сколь-нибудь похожей на земную химико-биологической эволюции. Тем более трудно предположить нечто подобное для слишком далеких от Солнца Урана и трансурановых планет.

В целом современная точка зрения сводится к тому, что ни на одной из планет Солнечной системы не может существовать жизни земного образца. Уникальность земной жизни неплохо объясняется положением протоземного облака относительно центрального светила и исходным химическим составом этого облака, хотя в схеме объяснения наверняка есть немало весьма дискуссионных мест. Конечно же, конденсация силикатно-железной пыли массой порядка М~a на расстоянии порядка одной астрономической единицы от желтого карлика не ведет к однозначному выводу о появлении там через 4–5 миллиардов лет разумных существ, но зато ни на одном из этапов такой эволюции не видно пока слишком невероятных событий, разрывающих рассмотренную цепочку.

Зоогоническая фаза как космологический закон

Хотя мы вовсе не уверены, что появление жизни во Вселенной представляет собой столь же универсальное явление, как образование галактик, звезд и планетных систем, необходимо тем или иным образом задать этот феномен как закономерное следствие предшествующих стадий эволюции.

Последовательность событий, приводящая к зарождению и развитию жизни, представляется чем-то вроде цепочки реакторов.

Самый мощный из них — Сингулярность (или, вероятней всего, ее планковская окрестность) — работает не слишком понятным для нас образом, но в результате работы этого гравитационного суперреактора появляется пространство-время и зародыши будущих элементарных частиц (а возможно, и непосредственно некоторые частицы — фотоны, лептоны, кварки и гравитоны, если не выяснится их более тонкая структура). В эпоху t ~ 10– 6– 10– 5 сек. Вселенная начинает работать как реактор адронного синтеза — из кварков образуются адроны. Позднее, в более холодной ситуации Вселенная становится термоядерным реактором, осуществляющим синтез водорода в гелий-4.

Еще позднее Вселенная разбивается на отдельные реакторы (галактики и звезды первого поколения), где в процессе сжатия происходит синтез более тяжелых элементов. Благодаря выходу этих реакторов во взрывной режим, космос химически обогащается, и некоторые не слишком горячие объекты, например, планеты у звездных систем 2-го поколения — становятся мощными химическими реакторами, где синтезируются различные молекулярные соединения. Когда химические соединения делаются достаточно сложными и многообразными, возникает основа для дальнейшего усложнения структур. В относительно тонком приповерхностном слое некоторых планет создается своеобразный биологический реактор, продуцирующий относительно устойчивые молекулярные комплексы, способные к длительному обмену энергией и веществом с окружающей средой. Если условия этого обмена, способствующие устойчивости комплекса, каким-то образом кодируются в его структуре (в виде информации, записанной на молекулярном уровне), то комплексы начинают репродуцироваться в наиболее приспособленной к данным условиям форме. Вариация условий окружающей среды — радиационного, температурного и химического режимов по необходимости приводит либо к гибели образований, либо к их усложнению, допускающему более широкую адаптацию. Так появляются первые живые существа — безъядерные клетки, способные в некоторой степени регулировать отношения с окружающей средой.

Биологический реактор на протяжении миллиардов лет генерирует все усложняющиеся живые структуры, пока не возникает человек с характерным социальным типом передачи части наследственной информации и формирующейся на этой основе культурной сферой, которая открывает путь к особо активному воздействию на окружающую среду.

Цивилизации древнего мира — тот первый рубеж, когда действие социокультурных факторов обретает тот же порядок эффективности, что и факторов экологических. Впоследствии в связи с наступлением технологической эры первые начинают преобладать. Можно говорить даже о формировании своего рода социокультурного реактора, продуцирующего высокоорганизованные структуры, которые способны моделировать и реконструировать в процессе моделирования окружающую среду.

Именно в этой фазе жизнь (разумная жизнь!) становится космически значимым фактором. Биологический реактор, однажды появившись, способен преобразовать поверхностный слой отдельной планеты [147] . Социокультурный реактор, овладевший преобразованиями энергии в планетарных масштабах, приводит к экспансии инженерной деятельности в околопланетное и околосолнечное пространство с вполне вероятным (и уже наблюдаемым) созданием там более или менее крупных искусственных объектов. Разумеется, такие объекты не могут рассматриваться в рамках обычной космогонии. Закон, в соответствии с которым через 4–5 млрд. лет планеты первого поколения у молодых звезд типа Солнца должны порождать искусственные спутники или по-другому — обычные звезды второго поколения должны порождать радиозвезды третьего поколения (скажем, маяки для посылки межзвездных сигналов), выглядел бы нелепо без учета жизни как особого космического феномена.

147

Что и наблюдается на Земле, где наружные слои коры почти полностью (на 95 %) являются продуктом жизнедеятельности живых организмов.

Включив фрагментарное описание этого феномена во II часть книги, посвященную современной картине естественной эволюции, я хотел бы подчеркнуть следующее.

Независимо от проблемы Контакта, которую мы подробно обсудим в III части, жизнь в ее биологическом и социокультурном аспектах представляет собой совершенно необходимый и естественный элемент современной космогонии.

Традиционное резкое деление природы на живую и неживую, унаследованное нами из науки 18 и первой половины 19 веков — доэволюционной науки, объективно лишь постольку, поскольку существует значительная разница в методах физики, изучающей элементарные структуры, и биологии и социологии, имеющих дело со сверхсложными структурами.

Наблюдаемая сейчас тенденция к синтезу научного знания связана с исследованием сложных систем. Физика пытается освоить непривычную для себя область объектов, свойства которых зависят от уровня структурной организации. Биосоциальные науки так или иначе стремятся объяснить многие особенности своих объектов, разлагая их на относительно простые подсистемы.

В той мере, в какой этот синтез захватывает наши представления о Вселенной, мы вынуждены строить единую космогоническую картину, где некоторые молодые звезды второго поколения задолго до завершения своей энергетической эволюции способны генерировать третье поколение искусственных космических объектов с необычными свойствами.

Разумеется, это предъявляет особо высокие требования к анализу предыдущих этапов эволюции.

Но самое важное заключается, пожалуй, в осознании неизбежности включения зоогонической фазы в общую космологию. Уникальность нашей цивилизации не должна рассматриваться как абсолютная преграда на этом пути, подобно тому, как уникальность Вселенной — это еще не основание для отбрасывания космологических моделей.

Сплошные проблемы

Резюмируя популярное изложение того или иного раздела науки, нередко прибегают к архитектурному образу — смотрите, какое великолепное здание выросло на пустынном и диком месте!

  • Читать дальше
  • 1
  • ...
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: