Шрифт:
Z2 = (1 + 9)2 – 1;
т.е. для одноступенчатой ракеты обеспечение разгона до V1 = 8 км/с и последующего торможения до V = 0 требует, чтобы масса топлива была в 99 раз больше массы ракеты без топлива. Практически это невозможно.
Циолковский дал решение задачи о мягкой посадке на поверхность планеты без атмосферы с учетом силы притяжения, полагая, что масса ракеты (корабля) меняется по показательному закону. В этом случае (если М = М0 е– at) уравнение прямолинейного (радиального) движения будет:
или (упрощающее предположение):
Величина
дает перегрузку. Если n – задано, то задача о мягкой посадке решается очень просто (это элементарная задача о равнозамедленном движении).
Циолковский в ряде своих работ придает важное значение случаю равнопеременных прямолинейных движений ракеты, когда М = М0 е– at. По существу дела он первым детально обследовал этот класс движений ракеты» [27] [с. 86-87].
А теперь сравним это с тем, что писал К.Э. Циолковский, конечно, для доказательности, по возможности, цитируя и его.
Он писал для среды без притяжения:
«Пусть, например, ракета силою взрыва некоторого (не всего) количества газов приобрела скорость 10000 км/с. Теперь для остановки следует приобрести такую же скорость, но в обратном направлении. Очевидно, количество оставшихся взрывчатых веществ … должно быть в пять раз больше массы М1 снаряда». (Он, конечно, эту цифру получил из формулы (2) – Г.С.).
«Стало быть, снаряд должен иметь по окончании первой части взрыва (для приобретения поступательной скорости) запас взрывчатого вещества, масса которого выразится через 5 М1 = М2.
Вся масса вместе с запасом составит М2 + М1 = 5М1 + М1 = 6М1.
Этой массе 6М1 первоначальное взрывание должно также сообщить скорость в 10000 м/сек, а для этого нужно новое количество взрывчатого материала, которое должно также в пять раз превышать массу снаряда с массою запаса для остановки, т.е. мы должны 6М1 увеличить в пять раз; получим 30М1 что вместе с запасом для остановки 5М1 составит 35М1
Обозначив число, показывающее, во сколько раз масса взрывчатого материала больше массы снаряда, через q = М2/М1 предыдущие рассуждения, определяющие массу всего взрывчатого вещества М2/М1 для приобретения скорости и уничтожения ее, выразим так:
М3/М1 = q + (1+q) q = q (2 + q)
или, прибавляя и вычитая единицу из второй части уравнения, получим
М3/М1 = 1 + 2q + q2– 1 = (1+q)2 – 1 (11)
т.е. он своим путем получил формулу (9).
К.Э. Циолковский не составлял и не решал, в частности, уравнения (10). Ни в одной из своих работ он даже не упоминал о законе изменения массы ракеты – он этого просто не понимал – и, конечно, в рассматриваемой работе не предполагал, что оно происходит по показательному (или по линейному) закону, и он вообще не исследовал «этот класс движения ракеты». Он просто использовал в своих расчетах известную из школьного курса физики формулу для равнопеременного прямолинейного движения.
Изобретенная им ракета была четко функционально ориентирована на решение задачи о межпланетных путешествиях. Однако К.Э. Циолковскому не удалось доказать математически осуществимость своего замысла.
Во-первых, он не справился с выбором числа Z (да и не мог, видимо, в то время с этим справиться) и, кроме того, в полной мере даже не понял его сущность, а во-вторых, он не нашел выхода с решением проблемы посадки ракетного аппарата на другие планеты или на Землю. В самом деле, представляется фантастикой даже для настоящего времени обеспечить массу топлива на ракете почти в 100 раз больше массы ее конструкции. Эти расчеты приведены только для первой космической скорости и, кроме того, не учитывали необходимость повторного старта с астероида (планеты), набора необходимой скорости и ее гашения при посадке на Землю. Полученные здесь цифры были бы чудовищно большими (число Z составляло бы несколько тысяч) и не оставляли бы никаких надежд на осуществление межпланетных путешествий.
Обратим внимание, К.Э. Циолковский не акцентирует внимание на этом аспекте, как бы убирая подальше от читателя очередное препятствие на пути к осуществлению своего проекта. Зафиксировав факт необходимости больших значений числа Z, он не сделал, казалось бы, логичного вывода о невозможности осуществления с помощью его ракеты межпланетного путешествия.
Расчеты К.Э. Циолковского были ориентированы ни на решение проблем, ни на их выявление, а на создание у читателей иллюзии теоретической респектабельности его идеи. Они проводились (подгонялись) под заранее заданный ответ.