Вход/Регистрация
Наука логики
вернуться

Гегель Георг Вильгельм Фридрих

Шрифт:

Некоторые «математики пытались обойтись совершенно без понятия бесконечного и дать без него то, что казалось связанным с его употреблением. — Лагранж, например, рассказывает о методе, изобретенном Ланденом, и говорит о нем, что он является чисто аналитическим и не употребляет бесконечно «малых разностей, а сначала вводит различные значения переменных величин и в дальнейшем приравнивает их «между собою. Лагранж, впрочем, заявляет, что в этом методе утрачиваются свойственные диференциальному исчислению преимущества, а именно простота метода и легкость действия. — Это — прием, в котором есть нечто соответственно тому, из которого исходит Декартов метод касательных, о котором нам придется ниже еще говорить подробнее. Здесь можем заметить, что в общем виде сразу ясно, что этот прием, заключающийся в том, чтобы придавать переменным величинам различные значения и затем приравнивать их между собою, принадлежит вообще к другому кругу математической трактовки, чем сам метод диференциального исчисления, и им не выделяется подле- ВЕЛИЧИНА (КОЛИЧЕСТВО)

{299}

жащее далее более пристальному рассмотрению своеобразие того простого отношения, к которому сводится действительное, конкретное определение этого исчисления, а именно — отношения производной функции к первоначальной.

Более ранние из новых «математиков, как например, Ферма, Барроу и др., которые впервые пользуются бесконечно малыми в том применении, которое позднее привело к разработке диференциального и интегрального исчисления, а затем также Лейбниц и последующие математики, равно как и Эйлер, всегда откровенно высказывались, что считают дозволительным отбрасывать произведения бесконечно малых разностей так же, как и их высшие степени только на том основании, что они относительно, по сравнению с низшими порядками, исчезают.

Исключительно на этом соображении покоится у них основная теорема, а именно, определение того, что такое диференциал произведения или степени, ибо к этому сводится все теоретическое учение. Остальное есть отчасти механизм действий, отчасти же приложение, которое, однако, как мы покажем далее, на самом деле представляет более высокий или, лучше сказать, единственный интерес. — Относительно же того вопроса, который мы рассматриваем теперь, следует здесь привести лишь то элементарное соображение, что на основании того же рассуждения о незначительности принимается как основная теорема о кривых, что элементы кривых, а именно приращения абсциссы и ординаты имеют между собою то же отношение, как подкасательная и ордината. С целью получить подобные треугольники дуга, составляющая наряду с двумя приращениями третью сторону того треугольника, который справедливо назывался когда-то характеристическим треугольником, рассматривается как прямая линия, как часть касательной, и потому одно из приращений — как доходящее до касательной. Эти допущения поднимают, с одной стороны, вышеуказанные определения выше природы конечных величин; но, с другой стороны, здесь применяется к моментам, называемым теперь бесконечными, такой прием, который

{300}

значим лишь относительно конечных величин и при котором мы не имеем права чем-либо пренебрегать на основании его незначительности. Затруднение, тяготеющее над методом, остается при таком образе действия во всей своей силе.

Здесь мы должны указать на замечательный прием Ньютона (Princ. Mathem. phil. nat., lib. II, Lemma II, после propos. VII) — на изобретенный им остроумный кунштюк для устранения арифметически неправильного отбрасывания произведений бесконечно малых разностей или высших порядков этих последних при нахождении» диференциалов.

Он находит диференциал произведения, — из которого легко затем вывести диференциалы частного, степени и т. п. — следующим образом. Произведение, если уменьшить? и у, каждый порознь на половину его бесконечной разности, xdy ydx, dxdy переходит в ху—? —?? — ^-, а если увеличить?? у ровно настолько же, то произведение переходит в ху-\- + ^?
– \-y-j- + ~^-f- · Если от этого второго произведения отнять первое, то получается разность ydx-\-xdy, которая есть избыток приращения на целые dx и dy, так как на это приращение отличаются оба произведения; следовательно, это и есть диференциал ху. — Как видим, при этом приеме сам собою отпадает член, представлявший главное затруднение, произведение двух бесконечных разностей dxdy. Но, несмотря на имя Ньютона, следует сказать, что это, хотя и весьма элементарное, действие неправильно; неправильно, что ^ (y + %)-(x-f)(y-&) = (x + dx) (y + dy)-xy.

Только потребность обосновать ввиду его важности исчисление флюксий могла заставить такого математика, как Ньютон, обмануть себя подобным способом доказательства.

Другие формы, которыми пользуется Ньютон при выводе диференциала, связаны с конкретными, относящимися к движению значениями элементов и их степеней. — При употреблении формы ряда, которое вообще характерно для его метода, слишком напрашивается сказать, что мы всегда имеем возможность путем прибавления дальнейших членов

{301}

взять величину с той степенью точности, которая нам нужна, и что отброшенные величины относительно незначительны, что вообще результат есть лишь приближение; и он здесь также удовлетворился этим основанием, подобно тому, как он в своем методе решения уравнений высших степеней путем приближения отбрасывает высшие степени·, получающиеся при подстановке в данное уравнение каждого найденного еще неточного значения, на том же грубом основании, что они малы; см. Lagrange, Equations Numeriques, р. 125.

Ошибка, в которую впал Ньютон, разрешая задачу путем отбрасывания существенных высших степеней, ошибка, которая дала повод противникам торжествовать победу своего метода над его методом и истинный источник которой обнаружил Лаграпж в своем новейшем ее рассмотрении {Theorie des fonct. analyt., 3-me р., eh. IV»), доказывает, что употребление этого орудия еще страдало формализмом и неуверенностью. Лагранж показывает, что Ньютон впал в свою ошибку вследствие того, что он пренебрегал членом ряда, содержащим ту степень, которая была важна для данной задачи. Ньютон придерживался формального, поверхностного принципа отбрасывания членов ввиду их относительной малости. — А именно, известно, чго в механике членам ряда, в который разлагается функция какого-нибудь движения, придается определенное значение, так что первый член или первая функция относится к моменту скорости, вторая — к силе ускорения, а третья — к сопротивлению сил. Поэтому члены ряда должны рассматриваться здесь не только как части некоторой суммы, но как качественные моменты некоторого целостного понятия.

  • Читать дальше
  • 1
  • ...
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: