Вход/Регистрация
Приглашение в теорию чисел
вернуться

ОРЕ О.

Шрифт:

Система задач 4.3.

1. Решите задачу 1 § 1 (с. 49), используя алгоритм Евклида.

2. Найдите наибольший общий делитель для каждой из пяти первых пар дружественных чисел. Сравните результаты с результатами, полученными с помощью разложения на простые множители.

3. Каким количеством нулей заканчивается число

n! = 1 • 2 • 3 •… • n?

Сверьте свой результат с таблицей факториалов.

§ 4. Наименьшее общее кратное

Вновь вернемся к дробям. Чтобы сложить (или вычесть) две дроби

c/a, d/b,

мы приводим их к общему знаменателю, а затем складываем (или вычитаем) числители.

Пример.

2/15 + 5/9 = 6/45 + 25/45 = 31/45.

Вообще, чтобы получить сумму

c/a + d/b,

мы должны найти общее кратное для чисел а и b, т. е. число m, на которое делятся как число а, так и b. Одно из таких чисел очевидно, а именно, их произведение m = ab; в результате получаем в качестве суммы дробей

c/a + d/b = cb/ab + da/ab = (cb + da)/ab.

Но существует бесконечно много других общих кратных для чисел а и b. Предположим, что мы знаем разложение этих двух чисел на простые множители:

а = р1α1 • … • рrαr, b = р1β1 •… • рrβr. (4.4.1)

Число m, которое делится одновременно на числа а и b, должно делиться на каждый простой делитель pi чисел а и b и содержать его в степени μi не меньшей, чем большая из двух степеней αi и βi. Таким образом, среди общих кратных существует наименьшее

m0 = р1μ1 • … • рrμr, (4.4.2)

в котором каждый показатель степени μi равен большему из чисел αi и βi. Очевидно, что число m0 является наименьшим общим кратным и любое другое общее кратное чисел а и b делится на m0. Для наименьшего общего кратного существует специальное обозначение

m0 = K(a, b). (4.4.3)

Пример. а = 140, b = 110. Разложение на простые множители этих чисел таково:

a = 22 51 • 71 • 110, b = 21 • 51 • 70 • 111,

следовательно,

К(а, b) = 22 51 • 71 • 111 = 1540.

Существует следующее простое соотношение между наибольшим общим делителем и наименьшим общим кратным:

ab = D(a, b) K(a,b). (4.4.4)

Доказательство. Перемножив два числа из (4.4.1), получим

аb = p1α1+β1 … • prαr+βr. (4.4.5)

Как мы отмечали, степень числа рi в D(a, b) является меньшей из двух чисел αi и βi, а в числе К(а, b) она большая из них. Предположим, что αi ≤ βi. Тогда степень числа рi в числе D(a, b) равна αi, а в К(а, b) равна βi; следовательно, в их произведении

  • Читать дальше
  • 1
  • ...
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: