Вход/Регистрация
Приглашение в теорию чисел
вернуться

ОРЕ О.

Шрифт:

Пример. Пусть y = 15. Для него существуют два разложения на множители, удовлетворяющие условиям (5.3.3), а именно:

у = 15 • 1 = 5 • 3.

Первое из них дает

m = 8, n = 7, x = 112, у = 15, z = 113,

а второе

m = 4, n = 1, x = 8, y = 15, z = 17.

Пусть, далее, задана сторона х. Так как какое-то из чисел m или n делится на 2, то очевидно, что х = 2mn должно делиться на 4. Если разложить число х/2 на два взаимно простых множителя, то больший из них можно взять в качестве числа m, а меньший — n.

Пример. Возьмем х = 24; тогда

1/2 x = 12 • 1 = 4 • 3.

Первое разложение дает

m = 12, n = 4, х = 24, y = 143, z = 145,

а второе

т = 4, n = 3, х = 24, у = 7, z = 25.

Третий и последний случай приводит нас к необходимости коснуться одной важной задачи теории чисел. Если z — гипотенуза простейшего треугольника Пифагора, то в соответствии с (5.2.7) имеем

z = m2 + n2. (5.3.5)

т. е. число z есть сумма квадратов чисел m и n, удовлетворяющих условиям (5.2.8).

Это приводит нас к постановке вопроса, уже решенного П. Ферма: когда целое число можно представить в виде суммы квадратов двух целых чисел:

z = a2 + b2? (5.3.6)

На время забудем все ограничения на числа а и b. Пусть они могут иметь общие множители, а также каждое из них, или даже сразу оба могут обращаться в нуль. Перечислим все целые числа, меньшие десяти, представляемые в виде суммы двух квадратов:

0 = 02 + 02, 1 = 12 + 02, 2 = 12 + 12, 4 = 22 + 02, 5 = 22 + 12, 8 = 22 + 22, 9 = 32 + 02, 10 = 32+12.

Оставшиеся числа 3, 6 и 7 не представляются в виде суммы двух квадратов.

Опишем, как можно выяснить, является ли число суммой двух квадратов. К сожалению, мы не можем привести здесь доказательства ввиду его сложности.

Рассмотрим вначале простые числа. Каждое простое число вида р = 4n + 1 всегда является суммой двух квадратов; например,

5 = 22 + 12, 13 = 32 + 22, 17 = 42+12, 29 = 52 + 22.

Существенно, что такое представление может осуществляться единственным способом.

Остальные нечетные простые числа имеют вид q = 4n + 3, т. е.

q = 3, 7, 11, 19, 23, 31…

Ни одно такое простое число не представляется в виде суммы двух квадратов; более того, вообще ни одно число вида 4n + 3 не может быть представлено в виде суммы двух квадратов. Чтобы убедиться в этом, заметим, что если целые числа а и b оба четные, то а2 и b2 оба делятся на 4, отсюда и а2 + b2 делится на 4. Если они оба нечетные, например, а = 2k + 1, b = 2l + 1, то а2 + b2 = 4k2 + 4k + 1 + 4l2 + 4l + 1 = 4 (k2 + l2 + k + l) + 2, поэтому а2 + b2 имеет при делении на 4 остаток 2. И наконец, если одно из целых чисел а и b четное, а другое — нечетное, скажем, а = 2k + 1, b = 2l, то а2 + b2 = 4k2 + 4k + 1 + 4l2 и имеет при делении на 4 остаток 1. Итак, мы перебрали все возможности и можем заключить, что сумма двух квадратов никогда не представима в виде 4n + 3.

Чтобы закончить наше исследование для простых чисел, заметим, что 2 = 12 + 12.

Для того чтобы проверить, является ли составное число z суммой двух квадратов, разложим его на простые множители

z = p1α1 p2α2 •… • pkαk. (5.3.7)

  • Читать дальше
  • 1
  • ...
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: