Вход/Регистрация
Десять великих идей науки. Как устроен наш мир.
вернуться

Эткинз Питер

Шрифт:

Рис. 7.10.Когда положение частицы ограничено определенной областью пространства, допустимы лишь те волновые функции (и соответствующие им энергии), которые «укладываются» в контейнер. Слева мы видим прямое изображение и изображение двух волновых функций: одна укладывается в контейнер и допустима, другая (состоящая из точек) не укладывается и не допустима. Справа мы видим результаты для энергии: серый столбик показывает классические разрешенные энергии, а горизонтальные линии показывают первые шесть квантовых, разрешенных энергетических уровней. Соответствующие волновые функции показаны правее.

Квантование интересным способом возникает в случае маятника, создавая один необычный аспект. Сначала рассмотрим волновую функцию для положения качающегося груза с точно определенной энергией (так, что он находится в определенном квантовом состоянии). Потенциальная энергия груза возрастает, когда груз отклоняется в какую-либо сторону, поэтому его кинетическая энергия падает, чтобы сохранить полную энергию постоянной, и с классической точки зрения мы можем ожидать, что волновая функция имеет наибольшую амплитуду в крайних точках качания, где груз задерживается дольше. Мы уже видели одну такую волновую функцию (рис. 7.5 ). Так же как для шарика между зажимами, допустимыми волновыми функциями будут те, которые согласуются с рядом величин, допускаемых качанием от одной поворотной точки до другой. Поскольку только некоторые из возможных волновых функций ведут себя подходящим образом, и каждая волновая функция соответствует определенной энергии, отсюда следует, что только некоторые энергии являются допустимыми. Оказывается, что эти допустимые энергии образуют однородную лестницу величин с разделительным интервалом между «ступеньками», который мы запишем как h x частота, где h— постоянная Планка, а частота (о которой мы скоро скажем больше) является параметром, обратно пропорциональным корню квадратному из длины маятника. Для маятника длиной 1 м на поверхности Земли вычисления дают частотув 0,5 Гц, поэтому интервал между допустимыми энергетическими уровнями представляет собой очень маленькую и совершенно не регистрируемую величину в триста триллионно-триллионно-триллионных джоуля (3x10 – 34Дж), но он существует. Некоторые из этих энергий и соответствующие им волновые функции изображены на рис. 7.11.

Рис. 7.11.Несколько первых энергетических уровней и соответствующих им волновых функций для маятника. Заметим, что уровни энергии разделены равными интервалами. Вы также можете заметить, что форма волновой функции с наименьшей энергией не похожа на формы, которые мы предполагаем у волновых функций с высокими энергиями (как, например, на рис. 7.5 ), поскольку маятник вероятнее всего обнаружить вблизи нулевого смещения от вертикали, а не у точек возврата. Мы можем пользоваться классическими идеями для конструирования наших представлений о волновых функциях лишь для высоких энергий.

Теперь, вот удивительная черта. Предположим, что мы оттягиваем груз и отпускаем его. Он будет раскачиваться в некотором диапазоне энергий, возможно, из-за толчков молекул воздуха или неровности подставки. Поэтому его реальная волновая функция будет волновым пакетом, сформированным суперпозицией большого числа функций, подобных изображенным на иллюстрации. Волновой пакет прокатывается из стороны в сторону, двигаясь быстрее, когда маятник вертикален, и медленнее на краях размаха качаний, так же как классический маятник. Более того, и это удивительно, частота качаний — число качаний груза из стороны в сторону за секунду — в точности равна параметру частоты, появляющемуся в выражении для интервалов между квантовыми энергетическими уровнями. Поэтому, когда вы наблюдаете качание маятника, вы не только видите движение волнового пакета, вы видите также, наблюдая частоту, прямое отображение в высшей степени близко расположенных энергетических уровней. Другими словами вы непосредственно наблюдаете квантование. Маятник является мощным усилителем для интервалов между его квантовыми энергетическими уровнями, и когда вы наблюдаете однометровый маятник, качающийся туда-сюда, вы непосредственно наблюдаете энергетический интервал в триста триллионно-триллионно-триллионных джоуля. Я думаю, что это удивительно.

Главным выводом из этого обсуждения является то, что квантование естественно вытекает из уравнения Шредингера и что классическое поведение возникает, когда точный квантовый уровень неизвестен, и мы должны формировать волновой пакет.

Я украдкой ввернул в обсуждение слово, являющееся центральным для проблемы интерпретации квантовой механики, слово вероятность. В оставшейся части этой главы мы исследуем скрытые смыслы и следствия этого ускользающего слова, поскольку оно имеет глубокую значимость для способа, посредством которого мы думаем о мире. На самом деле я хочу вернуться к некоторым аспектам текущего обсуждения и попытаться извлечь из них несколько философских вопросов. Я колебался, не следует ли написать «эпистемологических и онтологических вопросов», то есть вопросов, связанных с природой знания и фундаментальных основ реальности. Именно такими они и окажутся, но я не философ, и не хочу создавать впечатления, что мои замечания сколько-нибудь претендуют на статус философских. Поэтому я решил написать просто «вопросов» и оставить все как есть.

Хотелось бы сделать еще одно замечание. Предшествующий материал этой главы включает в себя все, что вам в действительности необходимо знать, если вы хотите пользоваться квантовой механикой. Конечно, я оставил в стороне технические и математические детали, но все, что сказано до сих пор, является достаточно содержательным и бесспорным. Те 30 процентов экономики США, которые основаны на квантовой механике, являются результатом использования этого материала, открывающего глаза на природу происходящего. Квантовая механика становится интересной с философской точки зрения, когда мы начинаем спрашивать, что все это означает? Это и станет темой оставшейся части главы. Если вы остановитесь здесь, вы будете знать главные положения квантовой механики и, в принципе, сможете использовать ее для произведения некоторых вычислений; если вы продолжите чтение, ваши возможности пользоваться ею не увеличатся, но вы узнаете, почему люди находят ее столь глубоко озадачивающей.

Сначала я обращусь к принципу неопределенности и попытаюсь оправдать подзаголовок этой главы: упрощение понимания. Многие люди — и среди них отцы-основатели квантовой механики — считают, что принцип неопределенности ограничивает наше понимание мира, ибо, поскольку мы не можем знать положение и импульс частицы одновременно, нам доступно лишь неполное знание ее состояния. Этот пессимистический взгляд, по моему мнению, является следствием нашей культурной обусловленности. Классическая физика и наш непроизвольный повседневный опыт воспитали в нас веру в то, что вещи мира полностью описываются в терминах положений и импульсов. То есть, чтобы описать путь летящего мяча — или просто предугадать, когда по нему следует ударить, — нам необходимо оценить его положение и импульс в каждый момент. Что нам демонстрируют квантовая механика и, в частности, принцип неопределенности, так это то, что это ожидание, ожидание описания в терминах обоих атрибутов, является чрезмерным. Мир просто не соответствует ему. Квантовая механика говорит нам, что мы должны выбрать. Мы должны выбрать между обсуждением мира в терминах положений частиц и обсуждением мира в терминах импульсов частиц. Другими словами, нам следует говорить только о положении мяча или только об его импульсе. Именно в этом смысле принцип неопределенности является главным упрощением нашего описания мира, поскольку он показывает, что наши классические ожидания ложны; мир просто не похож на картинку, рисуемую классической физикой и непроизвольным повседневным опытом.

Пойдем дальше. Из принципа неопределенности следует, что для описания мира существуют два языка: язык положений и язык импульсов. Если мы попытаемся использовать оба языка одновременно (как делает классическая физика, и до сих пор делают те, кто находится под влиянием ее принципов), мы можем ожидать, что создадим ужасную путаницу, как если бы мы попытались смешать английский и японский языки в одном предложении. Как сообщают, сам Гейзенберг считал это предпосылкой для того, чтобы полагать ошибочным утверждение «для предсказания будущего нам необходимо знать настоящее». Ошибался, однако, он сам. Корректная интерпретация принципа неопределенности состоит в том, что он выявляет стремление классической физики к получению недозволенной, дезориентирующей и чрезмерной полноты знания о настоящем: для полного знания о настоящем достаточно знать одниимпульсы или, как альтернатива, одни положения.

  • Читать дальше
  • 1
  • ...
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: