Вход/Регистрация
Maple 9.5/10 в математике, физике и образовании
вернуться

Дьяконов Владимир Павлович

Шрифт:
eqn := max(x, - 12 + 3x) = min(10x + 8, 22 - x)

> r:=solve(eqn, {x});

> map(subs,[r],eqn);

> eqn := LambertW(3*x)=ln(x);

eqn := LambertW(3x) = ln(x)

> r:=solve(eqn, {x});

r:= {x = e³}

> map(subs, [r], eqn);

[LambertW(3e³) = ln(e³)]

> evalf(map(subs,[r], eqn));

[3.000000000 = 3.000000000]

Полезно обратить внимание на не вполне обычную проверку правильности решений. Иногда при этом выводятся значения левой и правой частей уравнения, требующие осмысления полученных результатов.

4.8.8. Решение неравенств

Неравенства в математике встречаются почти столь же часто, как и равенства. Они вводятся знаками отношений, например > (больше), < (меньше) и т.д. Решение неравенств существенно расширяет возможности функции solve. При этом неравенства задаются так же, как и равенства. Приведенные на рис. 4.35 примеры поясняют технику решения неравенств.

Рис. 4.35. Примеры, иллюстрирующие решение неравенств

Из приведенных примеров очевидна форма решений — представлены критические значения аргумента, вплоть до не включаемых значений области действия неравенства (они указываются словом Open). Всегда разумным является построение графика выражения, которое задает неравенство — это позволяет наглядно убедиться в правильности решения.

Приведем еще несколько примеров решения неравенств в аналитической форме (файл solveu):

> solve(5*х>10,х);

RealRange(Open(2), ∞)

> solve(5*х>=10,х);

RealRange(2, ∞)

> solve(ln(х)>2,х);

Rea1Range(Open(e²), ∞)

> solve(ехр(х)>10, х);

RealRange(Open(ln(10)), ∞

> solve(a*x>b,{х});

> eqn := abs(z)^2/(z+1) < ехр(2)/(ехр(1)-1);

> solve(eqn, {z});

> eqn := ехр(х)*х^2 >= 1/2;

> solve(eqn, {x});

> eqns := abs((z+abs(z+2))^2-1)^2 = 9;

eqns := |(z +|z + 2|)² - 1|² = 9

> solve(eqns, {z});

{z = 0 }, { z ≤ -2}

> eqns := { х^2<1, у^2<=1, х+у<1/2 };

eqns:={х² < 1, y² ≤ 1, х + y < ½}

> solve(eqns, {x, у});

{y ≤ 1, -1 ≤ y, x+y < ½, -1 < x, x < 1}

В последнем примере показано решение системы неравенств. При этом выдаются области определения нескольких переменных.

4.8.9. Решение функциональных уравнений

Решение функционального уравнения, содержащего в составе равенства некоторую функцию f(х), заключается в нахождении этой функции. Для этого можно использовать функцию solve, что демонстрируют приведенные ниже примеры (файл solvefe):

> A:=solve(f(х)^2-х+1,f);

А := proc(x) RootOf(_Z^ 2 -х + 1, label =_L7) end proc

> convert(A(x),radical);

> allvalues(%);

> B:=solve(f(x)*x=ln(x^2),f);

В := proc(x) ln(x^2)/x end proc

> convert(B(x),radical);

> C:=solve(f(x)*х^2=а*х^2+b*х+с, f);

C := proc(x) (ax×x^2 + bx×x + c)/x^2 end proc

> convert(C(x),radical);

4.8.10. Решение уравнений с линейными операторами

Maple позволяет решать уравнения с линейными операторами, например, с операторами суммирования рядов и дифференцирования. Ограничимся одним примером такого рода (файл solvefo):

> S := sum((a+b*exp(x[i])-y[i])^2, i=0..n);

  • Читать дальше
  • 1
  • ...
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: