Вход/Регистрация
Maple 9.5/10 в математике, физике и образовании
вернуться

Дьяконов Владимир Павлович

Шрифт:

contourplot3d([f,g,h],a..b,c..d)

Здесь f, g и h — функции; expr1 — выражение, описывающее зависимость высоты поверхности от координат x и y: exprf, exprg и exprh — выражения, зависящие от s и t, описывающие поверхность в параметрической форме; а и b — константы вещественного типа; c и d — константы или выражения вещественного типа; х, у, s и t — имена независимых переменных.

На рис. 8.24 показано построение графика линиями равного уровня для одной функции. Параметр filled=true обеспечивает автоматическую функциональную окраску замкнутых фигур, образованных линиями равного уровня. Порою это придает графику большую выразительность, чем при построении только линии равного уровня.

Рис. 8.24. Пример построения графика функции линиями равного уровня

К сожалению, в данном варианте окраски сами контурные линии получаются черными и их невозможно отличить. Однако если убрать параметр filled=true, то контурные линии (и линии легенды) будут иметь разный цвет и легко различаться. Оцифровка линий контурного графика, увы, не предусмотрена.

Функция contourplot позволяет строить и графики ряда функции. Пример такого построения показан на рис. 8.25. Множество окружностей на этом рисунке создается четырьмя поверхностями, заданными функциями с1, с2, c3 и с4.

Рис. 8.25. Пример построения графиков многих функций линиями равного уровня

Обратите внимание, что на многих графиках Maple по умолчанию вписывает легенду, то есть список линий с обозначениями. Иногда (как, например, на рис. 8.25), этот список оказывается просто некстати. Легенду можно убрать, расширив заодно место для графика, сняв флажок Show Legend в контекстном меню Legend правой клавиши мыши (это меню видно на рис. 8.25). Заодно запомните, что легенду можно редактировать, выполнив команду Edit Legend.

Следует отметить, что хотя графики в виде линий равного уровня выглядят не так эстетично и естественно, как обычные графики трехмерных поверхностей (ибо требуют осмысления результатов), у них есть один существенный плюс — экстремумы функций на таких графиках выявляются порой более четко, чем на обычных графиках. Например, небольшая возвышенность или впадина за большой «горой» на обычном графике может оказаться невидимой, поскольку заслоняется «горой». На графике линий равного уровня этого эффекта нет. Однако выразительность таких графиков сильно зависит от числа контурных линий.

8.5.5. График плотности

Иногда поверхности отображаются на плоскости как графики плотности — чем выше высота поверхности, тем плотнее (темнее) окраска. Такой вид графиков создается функцией densityplot. Она может записываться в двух форматах:

densityplot(expr1, х=а..b,у=с..d)

densityplot(f,a..b,c..d)

где назначение параметров соответствует указанному выше для функции contourplot.

На рис. 8.26 (верхняя часть) дан пример построения графика такого типа. Нетрудно заметить, что в плоскости XY график разбит на квадраты, плотность окраски которых различна. В нашем случае плотность окраски задается оттенками серого цвета.

Рис. 8.26. Графики плотности и поля векторов

Обычно графики такого типа не очень выразительны, но имеют свои области применения. К примеру, оттенки окраски полупрозрачной жидкости могут указывать на рельеф поверхности дна емкости, в которой находится эта жидкость.

8.5.6. Двумерный график векторного поля

Еще один распространенный способ представления трехмерных поверхностей — графики полей векторов. Они часто применяются для отображения полей, например электрических зарядов. Особенность таких графиков в том, что для их построения используют стрелки, направление которых соответствует направлению изменения градиента поля, а длина — значению градиента. Так что термин «поле векторов» надо понимать в смысле, что поле графика заполнено векторами.

Для построения таких графиков в двумерной системе координат используется функция fieldplot:

fieldplot(f, r1, r2)

fieldplot(f, r1, r2, ...)

где f — вектор или множество векторов, задающих построение; r1 и r2 — пределы.

На рис. 8.26 в нижней части документа показан вид одного из таких графиков. Следует отметить, что для получения достаточного числа отчетливо видных стрелок надо поработать с форматированием графиков. Иначе графики этого типа могут оказаться не очень представительными. Так, слишком короткие стрелки превращаются в черточки и даже точки, не имеющие острия, что лишает графики наглядности.

8.5.7. Трехмерный график типа implicitplot3d

Трехмерные поверхности также могут задаваться уравнениями неявного вида. В этом случае для построения их графиков используется функция implicitplot3d:

implicitplot3d(expr1,х=а..b,y=c..d,z=p..q,<options>)

implicitplot3d(f,a..b,c..d,p..q, <options>)

На рис. 8.27 показаны два примера построения любопытных объемных фигур с помощью функции implicitplot3d.

  • Читать дальше
  • 1
  • ...
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: