Вход/Регистрация
Maple 9.5/10 в математике, физике и образовании
вернуться

Дьяконов Владимир Павлович

Шрифт:

plot([r(t), theta(t), t=tmin..tmax], h, v, p, coords=polar)

Здесь существенным моментом является задание полярной системы координат параметр coords=polar. Рис. 8.9 дает примеры построения графиков функций в полярной системе координат.

Рис. 8.9. Построение графиков функций в полярной системе координат

Графики параметрических функций и функций в полярной системе координат отличаются огромным разнообразием. Снежинки и узоры мороза на стеклах, некоторые виды кристаллов и многие иные физические объекты подчиняются математическим закономерностям, положенным в основу построения таких графиков.

8.3. Построение трехмерных графиков

8.3.1. Функция plot3d

Трехмерными графиками называют графики, отображающие функции двух переменных z(x, y). Каждая точка z, таких графиков является высотой (аппликатой) точки, лежащей в плоскости XY и представленной координатами (хi, уi). Поскольку экран монитора компьютера в первом приближении является плоским, то на деле трехмерные графики представляют собой специальные проекции объемных объектов.

Для построения графиков трехмерных поверхностей Maple имеет встроенную в ядро функцию plot3d. Она может использоваться в следующих форматах:

plot3d(expr1, x=a..b, y=c..d,p)

plot3d(f, a..b, c..d,p)

plot3d([exprf,exprg,exprh], s=a..b, t=c..d,p)

plot3d([f,g,h], a..b, c..d,p)

В двух первых формах plot3d применяется для построения обычного графика одной поверхности, в других формах — для построения графика с параметрической формой задания поверхности. В приведенных формах записи f, g и h — функции; expr1 — выражение, отражающее зависимость от х и у; exprf, exprg и exprh — выражения, задающие поверхность параметрически; s, t, а и b — числовые константы действительного типа; c и d — числовые константы или выражения действительного типа; х, у, s и t — имена независимых переменных; р — управляющие параметры.

8.3.2. Параметры функции plot3d

С помощью параметров р можно в широких пределах управлять видом трехмерных графиков, выводя или убирая линии каркасной сетки, вводя функциональную окраску поверхностей, меняя угол их обзора и параметры освещения, изменяя вид координатных осей и т.д. Следующие параметры функции plot3d задаются аналогично их заданию для функции plot:

axesfont font color coords font labelfcnt linestyle

numpoints scaling style symbol thickness title titlefont

Однако функция plot3d имеет ряд дополнительных специфических параметров

• ambientlight=[r,g,b] — задает интенсивность красного (r), зеленого (g) и синего (b) цветов подсветки в относительных единицах (от 0 до 1);

• axes=f — задает вид координатных осей (BOXED, NORMAL, FRAME и NONE, по умолчанию NONE);

• grid=[m,n] — задает число линий каркаса поверхности;

• gridstyle=x — задает стиль линий каркаса х ('rectangular' или 'triangular');

• labels=[x,y,z] — задает надписи по осям (х, у и z — строки, по умолчанию пустые);

• light=[phi,theta,r,g,b] — задает углы, под которыми расположен источник освещения поверхности, и интенсивности составляющих цвета (r, g и b);

• lightmodel=x — задает схему освещения (соответственно 'none', 'light1', 'light2', 'light3' и 'light4');

• orientation=[theta,phi] — задает углы ориентации поверхности (по умолчанию 45°);

• projections — задает перспективу при обзоре поверхности (r может быть числом 0 или 1, задающим включение или выключение перспективы, а также одной из строк 'FISHEYE', 'NORMAL' или 'ORTHOGONAL' (это соответствует численным значениям r, равным 0, 0,5, или 1, причем по умолчанию задано projection=ORTHOGONAL);

• shading=s — задает направления, по которым меняется цвет функциональной окраски (значения s могут быть XYZ, XY, Z, ZGREYSCALE, ZHUE, NONE);

• tickmarks=[l,n,m] — задает характер маркировки по осям х, у и z (числа l, n и m имеют значения не менее 1);

• view=zmin..zmax или view=[xmin..xmax, ymin, ymax, zmin..zmax] — задает минимальные и максимальные координаты поверхности для ее видимых участков.

Для трехмерных графиков возможно задание множества типов координатных систем с помощью параметра coords=Тип_координатной_системы. Поскольку на экране монитора поверхность отображается только в прямоугольной системе координат и характеризуется координатами х, у и z, то для представления поверхности, заданной в иной системе координат с координатами u, v и w, используются известные формулы для преобразования (u, v, w) -> (х, у, z). Их можно найти в справке. Вид графиков трехмерных поверхностей очень сильно различается в разных координатных системах. По умолчанию трехмерные графики строятся в прямоугольной системе координат — rectangular.

8.3.3. Построение поверхностей с разными стилями

На рис. 8.10 показано два примера простейших построений графиков трехмерной поверхности. По умолчанию в Maple строится поверхность с функциональной окраской и стилем style=patch (верхний рисунок) Функциональная окраска делает рисунки более информативными, но, увы, на рисунках в книге она превращается в окраску оттенками серого цвета. На рис. 8.10 показано также контекстное меню правой клавиши мыши, показывающее возможное команды, влияющие на вид трехмерных графиков.

  • Читать дальше
  • 1
  • ...
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: