Шрифт:
Структурные элементы некоторых видов диэлектриков (сегнетоэлектриков, пьезоэлектриков) обладают собственными электрическими дипольными моментами. Сегнетоэлектрики неограниченно долго сохраняют остаточную поляризацию и деполяризуются лишь при нагревании до точки Кюри (для большинства из них — около 100 °C). Эффективно нагревает любое вещество ударная волна, но сегнетоэлектрики более «капризны», чем ферромагнетики: слишком мощная волна может индуцировать в них столь сильное поле, что возникнет пробой и ток смещения не будет заряжать металлические обкладки, между которыми расположено рабочее тело (РТ). Но пусть все обошлось без пробоя, тогда пьезоэлемент — такой же, как в зажигалке, но значительно больший по размерам — зарядит конденсатор генератора частоты.
Как и в ядерных боеприпасах, в крупнокалиберных ЭМБП целесообразно размещать несколько небольших излучателей, рассеиваемых перед групповым подрывом — тогда цели поражаются на большей площади. Для кассетных элементов был разработан витковый генератор частоты (ВГЧ, рис. 4.45), обмотка которого состоит из одного, и то неполного витка 1. Короткая труба 2 смещена в сторону пьезоэлементов 3, поэтому сначала она, расширяясь под действием взрыва, «выбивает» из них ток, заряжая конденсатор 4, а уж затем замыкает контур, генерирующий излучение. Как и в случае других генераторов частоты, для ВГЧ была создана полуэмпирическая модель, в значительной степени опирающаяся на результаты токовых измерений (рис. 4.46).
В 125 мм реактивной гранате (рис. 4.47) размещаются три кассетных элемента. При срабатывании боевой части они рассеиваются, что позволяет рационально формировать поля излучения повысить стабильность эффектов поражения, воздействуя на цель с нескольких разных направлений — тогда более вероятны совпадения лепестков на наиболее «чувствительных» для цели частотах. Кроме того, время генерации РЧЭМИ не превышает для ВГЧ микросекунды, и взрывом можно образовать вокруг источника облако очень плотных газов, что позволяет избежать пробоя (важная особенность, о которой подробно — позже).
Опять же нетрудно уловить тенденцию: каждый из последующих образцов генераторов частоты формировал поток РЧЭМИ все меньшей длительности (что, правда, не означало уменьшения интегральной энергии). Но для военного применения длительность импульса РЧЭМИ, формируемого даже ВГЧ — избыточна…
В общем-то, это и так должно быть ясно: чем короче токовый импульс, наведенный РЧЭМИ, тем меньше теплоотвод or того элемента, в котором реализуется энергия этого импульса, но оценить численные значения стоит. Пусть весь тепловой эффект сосредоточен в области р-n перехода (размеры которого — около микрона). Тогда импульс бесконечно малой длительности (при которой повышение температуры кремния на расстоянии, сравнимом с микроном, пренебрежимо), нагревающий до данной температуры пластину данной площади, должен иметь определенную энергию, которая при дальнейших расчетах принималась равной единице (кпд равен 100 %). Если же энергия выделяется на той же глубине, но в течение большего времени, (рис. 4.48) существенным становится теплоотвод и для достижения той же температуры нагревать придется уже не микронный слой р-п перехода, а и близлежащие слои кремния, что ведет к снижению кпд. В результате расчетов была получена зависимость кпд различных временных режимов облучения, из которой следовало, что режимы более длительные, чем единицы микросекунд, не являются рациональными, энергосберегающими (рис. 4.49). Существует, правда, и другой механизм выхода р-n перехода из строя (пробой), но он реализуется только при наносекундных длительностях облучения, характерных для ударно-волновых излучателей, а не для генераторов частоты. Таким образом, режим излучения генераторов частоты нельзя признать эффективным с точки зрения нанесения поражений электронике противника, но зато устройства этого класса значительно проще и надежнее других и по параметру «эффективность/ стоимость» они вполне конкурентоспособны.
Рис. 4.49. Сравнительные эффективности различных временных режимов облучения
…Опять попросили о помощи друзья и снова святое это дело принесло богатый урожай. По просьбе разработчиков противотанковых средств из филиала НИИ «Базальт», решили проверить концепцию противотанкового гранатомета нового поколения.
На полигоне Главного автобронетанкового управления стоял один из не часто встречающихся (пока) танков (рис. 4.50), оснащенный системой активной защиты (САЗ).
САЗ — миниатюрный комплекс ПВО танка. Радиолокатор миллиметрового диапазона контролирует пространство впереди боевой машины, летящие к танку предметы селектируются и навстречу тем, которые представляют опасность — выстреливаются осколочные боеприпасы. Эффективность САЗ по таким целям, как реактивные гранаты или противотанковые управляемые ракеты близка к абсолютной: в моем присутствии были расстреляны несколько гранат, подлетавших к танку с разных курсовых углов. Для «Базальта» работа с ЭМБП была поиском концепции гранатомета способного преодолеть активную защиту танка. Главным требованием к ЭМБП — вспомогательному боеприпасу — была миниатюрность: он не должен был занять весь объем одноразового гранатомета, поскольку, кроме преодоления САЗ, надо было, выстрелом другой гранаты из того же гранатомета еще и пробить танковую броню. Поэтому список кандидатов был короток: испытанный ВМГЧ малого диаметра, да пара «новичков».
…Идея, положенная в основу ферромагнитный генератор частоты (ФМГЧ, рис. 4.51), состояла в прямом преобразовании содержащейся в ферромагнетике энергии в энергию РЧЭМИ.
Рис. 4.51. Общий вид и схема ферромагнитного генератора частоты (ФМГЧ)
Мощная ударная волна нагревает ферромагнетик до температуры, превышающей точку Кюри. Освобожденное волной поле наводит ЭДС в обмотке 1, окружающей магнит 2, подобно тому, как это имеет место в ФМГ. Но к обмотке подключен конденсатор 3 и колебания в высокодобротном контуре приводят к смене полярности тока, направление поля внутри магнита периодически меняется и тогда состояние вещества за фронтом ударной волны становится существенно неравновесным, что приводит к излучению энергии. Таким образом, чередуются циклы «подкачки» энергии в контур и ее рассеяния. Но излучение может и не «выйти», а превратиться в бесполезное тепло, если проводимость ферромагнетика высока, как у пластин электротехнического железа в ФМГ. Поэтому в ФМГЧ рабочим телом служит не железо, а магниты, изготовленные по «порошковой» технологии, такие как FeNdB — они проводят плохо и «выпускают» поле из примерно сантиметрового слоя. Поделив размер деполяризуемого структурного элемента (микроны) на скорость ударной волны (5 км/с), получим грубую оценку характерного времени элементарного акта излучения, а значит, и длины волны — дециметр. На самом же деле, спектр излучения очень сложен: он меняется с каждой последующей «излучательной» полуволной (рис. 4.52). Конечно, ФМГЧ не может выдать больше того, что «имеет»: ударная волна служит лишь спусковым механизмом, а в излучение преобразуется небольшая часть содержащейся в постоянном магните энергии. Мощность и энергия РЧЭМИ, генерируемого ФМГЧ — почти на три порядка меньше, чем у источников с кумуляцией магнитного поля [47] .
47
На конференции но сверхсильным матичным полям «Мегагаусс-7» сообщалось о веществах с гигантской магнитострикцией (TbFe2, YCo5 PrСо5 и других) и огромной индукцией насыщения (10–20 Тл), плотность магнитной энергии в которых близка к плотности химической энергии в обычной взрывчатке. Если удастся «извлечь» эту магнитную энергию, скачок удельных характеристик устройств типа ФМГЧ будет поистине революционен: последние оставят далеко позади излучатели на основе компрессии магнитного поля
Память читателей, наверняка верещит: «Про «точку Кюри и 100 градусов» — уже было…» Правильно, в строении постоянных магнитов и пьезоэлектриков есть много общего и грубой методической ошибкой было бы не «допустить к соревнованиям» и аналог ФМГЧ — пьезоэлектрический генератор частоты (ПЭГЧ). В таком генераторе (рис. 4.53) заряд взрывчатого вещества (ВВ) 1 состоит из двух элементов с разными скоростями детонации (у внутреннего конуса она меньше), чтобы обеспечить плоский фронт детонационной волны. Достигнув буфера 2, детонация формирует в нем ударную волну (УВ), которая, в несколько раз ослабившись, переходит из буфера в рабочее тело (РТ) 3 из сегнетоэлектрика, вызывая нагрев вещества РТ до температуры, превышающей точку Кюри и переход его в параэлектрическое состояние. Структурные элементы разрушаются и направленная поляризация вещества исчезает, что вызывает протекание тока деполяризации. Этот ток заряжает последовательно соединенные конденсаторы: образованный металлизованными поверхностями 4 на РТ и обычный 5, подсоединенный для получения нужной частоты колебаний в контуре. К другой обкладке РТ подключен соленоид 6, поэтому через промежуток времени, определяемый емкостью и индуктивностью контура, ток, а значит, и поле в РТ меняют полярность (рис. 4.54). Полуволны тока одной полярности сравнительно велики (происходит «подкачка» энергии в контур за счет деполяризации), а другой — значительно меньше из-за отбора энергии, в том числе и на излучение.