Вход/Регистрация
Prolog
вернуться

Неизвестно

Шрифт:

T1 = [d, e | Т2]

L = [a, b, c, d, e | T2]-T2

Рис. 8. 1. Конкатенация списков, представленных в виде разностных пар.

L1 представляется как A1-Z1, L2 как A2-Z2 и результат L3– как A1-Z2.

При этом должно выполняться равенство Z1 = А2.

8. 5. 4. Повышение эффективности зa счет добавления вычисленных фактов к базе данных

Иногда в процессе вычислений приходится одну и ту же цель достигать снова и снова. Поскольку в Прологе отсутствует специальный механизм выявления этой ситуации, соответствующая цепочка вычислений каждый раз повторяется заново.

В качестве примера рассмотрим программу вычисления N-го числа Фибоначчи для некоторого заданного N. Последовательность Фибоначчи имеет вид:

1, 1, 2, 3, 5, 8, 13, ...

Каждый член последовательности, за исключением первых двух, представляет собой сумму предыдущих двух членов. Для вычисления N-гo числа Фибоначчи F определим предикат

фиб( N, F)

Нумерацию чисел последовательности начнем с N = 1. Программа для фиб обрабатывает сначала первые два числа Фибоначчи как два особых случая, а затем определяет общее правило построения последовательности Фибоначчи:

фиб( 1, 1). % 1-е число Фибоначчи

фиб( 2, 1). % 2-е число Фибоначчи

фиб( N, F) :- % N-е число Фиб., N > 2

N > 2,

N1 is N - 1, фиб( N1, F1),

N2 is N - 2, фиб( N2, F2),

F is F1 + F2. % N-e число есть сумма двух

% предыдущих

Процедура фиб имеет тенденцию к повторению вычислений. Это легко увидеть, если трассировать цель

?- фиб( 6, F).

На рис. 8.2 показано, как протекает этот вычислительный процесс. Например, третье число Фибоначчи f( 3) понадобилось в трех местах, и были повторены три раза одни и те же вычисления.

Этого легко избежать, если запоминать каждое вновь вычисленное число. Идея состоит в применении встроенной процедуры assert для добавления этих (промежуточных) результатов в базу данных в виде фактов. Эти факты должны предшествовать другим предложениям, чтобы предотвратить применение общего правила в случаях, для которых результат уже известен. Усовершенствованная процедура фиб2 отличается от фиб только этим добавлением:

фиб2( 1, 1). % 1-е число Фибоначчи

фиб2( 2, 1). % 2-е число Фибоначчи

фиб2( N, F) :- % N-e число Фиб., N > 2

N > 2,

Nl is N - 1, фиб2( N1, F1),

N2 is N - 2, фиб2( N2, F2),

F is F1 + F2, % N-e число есть сумма

% двух предыдущих

asserta( фиб2( N, F) ). % Запоминание N-го числа

Эта программа, при попытке достичь какую-либо цель, будет смотреть сперва на накопленные об этом отношении факты и только после этого применять общее правило. В результате, после вычисления цели фиб2( N, F), все числа Фибоначчи вплоть до N-го будут сохранены. На рис. 8.3 показан процесс вычислении 6-го числа при помощи фиб2. Сравнение этого рисунка с рис. 8.2. показывает, на сколько уменьшилась вычислительная сложность. Для больших N такое уменьшение еще более ощутимо.

  • Читать дальше
  • 1
  • ...
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: