Розенфельд Борис Абрамович
Шрифт:
Проста и альтернативная алгебра О октонионов. Применяя к ней Картанов алгоритм, мы получим простую альтернативную алгебру O' псевдооктонионов, а применяя к алгебре О квазикартанов алгоритм, мы получим квазипростую альтернативную алгебру O0 полуоктонионов.
Мое внимание к квазипростым алгебрам привлек И.М.Яглом еще в то время, когда я готовил докторскую диссертацию. Позднее он заинтересовал меня вырожденными неевклидовыми геометриями, группами движений которых являются квазипростые и r-квазипростые группы Ли.
Наиболее известными квазипростыми группами Ли являются группы движений евклидова и псевдоевклидовых пространств. Группа движений n- мерного вещественного евклидова пространства является тройственной по Картану по отношению к группам движений n-мерных вещественных эллиптического и гиперболического пространств. Группа движений n- мерного вещественного псевдоевклидова пространства индекса k является тройственной по Картану по отношению к группам движений n-мерных вещественных псевдоэллиптических пространств индексов k и k+1.
Если дополнить n-мерные евклидово и псевдоевклидовы пространства их бесконечно удаленными гиперплоскостями до проективного пространства, гиперсферы евклидова и псевдоевклидовых пространств высекают из этих гиперплоскостей мнимую и вещественную квадрики. Эти квадрики можно рассматривать как абсолюты (n-1)-мерных эллиптического и псевдоэллиптических пространств. Бесконечно удаленные гиперплоскости евклидова и псевдоевклидовых пространств вместе с квадриками, высекаемыми из них гиперсферами этих пространств, называются абсолютами евклидова и псевдоевклидовых пространств.
По принципу двойственности проективного пространства евклидову пространству и псевдоевклидовым пространствам вместе с их абсолютами соответствуют коевклидово пространство и копсевдоевклидовы пространства, т.е. пространства с проективными метриками, абсолютами которых являются мнимый и вещественные гиперконусы второго порядка с точечными вершинами. Расстояния между точками этих пространств, расположенными на прямых, не проходящих через вершину гиперконуса, измеряются как на эллиптических и гиперболических прямых. Расстояния между точками прямых, проходящих через вершину гиперконуса, измерятся как на евклидовых прямых. За расстояния между точками коевклидова и копсевдоевклидовых пространств можно принять в первом случае углы между пересекающимися гиперплоскостями евклидова и псевдоевклидовых пространств, а во втором случае - расстояния между параллельными гиперплоскостями этих пространств.
Евклидово и коевклидово пространства являются частными случаями квазиэллиптического пространства дефекта m. Это пространство также является пространством с проективной метрикой, абсолют которого состоит из мнимого гиперконуса с плоской вершиной размерности n-m-1 и мнимой квадрики в этой плоскости. Расстояния между точками, расположенными на прямых, не пересекающих вершинную плоскость гиперконуса, и на прямых, лежащих в этой вершинной плоскости, измеряются как на эллиптических прямых. Расстояния между точками прямых, пересекающих вершинную плоскость, измеряются как на евклидовых прямых. При m =0 это пространство евклидово, при m =n-1 это пространство коевклидово.
Заменяя в определении квазиэллиптического пространства мнимый гиперконус и мнимую квадрику, или одну из этих поверхностей, вещественными, мы получим квазипсевдоэллиптические пространства, частными случаями которых являтся псевдоевклидовы и копсевдоевклидовы пространства.
Группы движений квазиэллиптических и квазипсевдоэллиптических пространств являются квазипростыми группами тройственными по Картану по отношению к группам движений эллиптического и псевдоэллиптического пространств или по отношению к группам движений двух псевдоэллиптических пространств разных индексов.
Вершинные (n-m-1)-мерные плоскости гиперконусов абсолютов n-мерных квазиэллиптических и квазипсевдоэллиптических пространств являются (n-m-1)-мерными эллиптическими пространствами или содержат (n-m-1)-мерное псевдоэллиптическое пространство.
Заменяя эти пространства (n-m-1)-мерными квазиэллиптическими или квазипсевдоэллиптическими пространствами, мы получим n-мерные биквазиэллиптические и биквазипсевдоэллиптические пространства. Группы движений этих пространств являются биквазипростыми группами Ли.
Повторяя эту операцию r-1 раз, мы получим r-квазиэллиптические и r-квазипсевдоэллиптические пространства. Группы движений этих пространств являются r-квазипростыми группами Ли.
Эти пространства были впервые определены Д.М.Ю.Соммервилем в статье "Классификация проективных метрик". В.Бляшке ввел термин "квазиэллиптическое пространство", рассматривая 3-мерное пространство этого типа дефекта 1.
И.И.Железина в своей диссертации, которой я руководил, рассматривала это же пространство и 3-мерные квазипсевдоэллиптические пространства того же дефекта.