Розенфельд Борис Абрамович
Шрифт:
О неассоциативно и следовательно произведение (ха)Ь не равно х(аЬ), точки октонионной проективной плоскости нельзя определить тремя октонионными координатами с точностью до прабого октонионного множителя. Поэтому Фрейденталь определял точки рассматриваемых им плоскостей октонионными эрмитово симметричными матрицами 3-го порядка, удовлетворяющими некоторым условиям, при которых эти матрицы определяются с точностью до вещественного множителя. Условия, наложенные Фрейденталем на эти октонионные матрицы 3-го порядка равносильны тому, что все элементы этих матриц принадлежат к одному ассоциативному подтелу тела О.
Ознакомившись с этой работой Фрейденталя, я определил на октонионной проективной плоскости О-пары, состоящие из точек и прямых, ввел в многообразие этих О-пар метрику аналогичную метрике вмногообразии О-пар вещественного проективного пространства, и доказал, что полученное метрическое пространство изометрично эрмитовой эллиптической плоскости над тензорным произведением алгебр C' и О, группа движений которой изоморфна некомпактной группе класса Е6 с характером -26. Отсюда я сделал вывод, что компактная группа класса Е6 изоморфна группе движений эрмитовой эллиптической плоскости над тензорным произведением алгебр C и О.
Из того, что все элементы матриц Фрейденталя принадлежат к одному ассоциативному подтелу тела О следует, что каждая точка октонионной проективной плоскости, а значит. и каждая точка проективной плоскости надтензорным произведением алгебр C и О, может быть определена тремя координатами из алгебры О или тензорного произведения алгебр C и О, принадлежащими к одной ассоциативной подалгебре этих алгебр и определенными с точностью до правого сомножителя из той же ассоциативной подалгебры.
Представление компактной группы класса Е6 в виде эрмитовой эллиптической плоскости над тензорным произведением алгебр C и О обобщается на компактные группы классов Е7 и Е8, которые можно представить, соответственно, в виде групп движений эрмитовых эллиптических плоскостей над тензорным произведением алгебр H и О и над тензорным произведением двух алгебр О. Я высказал предположение об этом факте в 1956 г., на основании того, что, как указал Э.Картан, компактные группы классов Е7 и Е8 являются группами движений симметрических римановых пространств размерности 64 и 128. Мое предположение было доказано Э.Б.Винбергом в 1964 г.
Продолжая исследования Фрейденталя, Ж.Титс доказал, что некомпактная вещественная простая группа Ли с характером -20 является группой движений октонионной эрмитовой гиперболической плоскости. Впоследствии я доказал, что расщепленная простая группа Ли этого класса является группой движений псевдооктонионной эрмитовой эллиптической плоскости и построил аналогичные геометрические интерпретации для всех некомпактных вещественных групп Ли классов Е6, Е7 и Е8. Геометрические интерпретации всех вещественных особых простых групп Ли рангов 4, 6, 7 и 8 имеют следующий вид.
Компактная простая группа Ли класса F4 локально изоморфна группе движений октонионной эрмитовой эллиптической плоскости.
Некомпактная вещественная простая группа Ли класса F4 с характером -20 локально изоморфна группе движений октонионной эрмитовой гиперболической плоскости.
Расщепленная простая группа Ли класса F4 локально изоморфна группе движений псевдооктонионной эрмитовой эллиптической плоскости.
Компактная простая группа Ли класса Е6 локально изоморфна группе двиэжений эрмитовой эллиптической плоскости над тензорным произведением алгебр C и О.
Некомпактная вещественная простая группа Ли класса Е6 с характером -14 локально изоморфна группе движений эрмитовой гиперболической плоскости над тензорным произведением алгебр C и О.
Некомпактная вещественная простая группа Ли класса Е6 с характером -26 локально изоморфна группе движений эрмитовой эллиптической плоскости над тензорным произведением алгебр C' и О и группе проективных преобразований октонионной проективной плоскости.
Некомпактная вещественная простая группа Ли класса Е6 с характером 2 локально изоморфна группе движений эрмитовой эллиптической плоскости над тензорным произведением алгебр C и О'.
Расщепленная простая группа Ли класса Е6 локально изоморфна группе движений эрмитовой эллиптической плоскости над тензорным произведением алгебр C' и О' и группе проективных преобразований псевдооктонионной проективной плоскости.
Компактная простая группа Ли класса Е7 локально изоморфна группе движений эрмитовой эллиптической плоскости над тензорным произведением алгебр H и О.
Некомпактная вещественная простая группа Ли класса Е7, с характером -5 локально изоморфна группам движений эрмитовой гиперболической плоскости над тензорным произведением алгебр H и О и эрмитовой эллиптической плоскости над тензорным произведением алгебр H' и О.
Некомпактная вещественная простая группа Ли класса Е7 с характером -25 локально изоморфна группе движений эрмитовой эллиптической плоскости над тензорным произведением алгебр H и О'.
Расщепленная простая группа Ли класса Е7 локально изоморфна группе движений эрмитовой эллиптической плоскости над тензорным произведением алгебр H' и О'.
Компактная простая группа Ли класса Е8 локально изоморфна группе движений эрмитовой эллиптической плоскости над тензорным произведением двух алгебр О.