Вход/Регистрация
Кибернетика или управление и связь в животном и машине
вернуться

Винер Норберт

Шрифт:

 

(4.03)

[c.166]

где а не исчезает при отрицательных , это значит, что мы не имеем больше истинного оператора для f(t), определяемого однозначно прошлым этой функции. Такое может встретиться в реальных физических ситуациях. Например, динамическая система без входа может прийти в постоянные колебания или даже в колебания, нарастающие до бесконечности, с неопределенной амплитудой. В этом случае будущее системы не определяется ее прошлым, и мы, наверное, можем найти формализм, в котором бы использовался оператор, зависящий от будущего.

Операция, посредством которой получено выражение (4.02) из f(t), имеет еще два существенных свойства: 1) она не зависит от сдвига начального момента и 2) она линейна. Первое свойство выражается утверждением, что если

 

, (4.04)

то

 

. (4.05)

Второе выражается утверждением, что если

 

, (4.06)

то

 

. (4.07)

Можно показать, что в некотором подходящем смысле всякий оператор для прошлого функции f(t), линейный и инвариантный относительно сдвига начального момента, имеет вид (4.02) или является пределом последовательности операторов этого вида. Например, f’(t) есть результат применения оператора с такими свойствами к f(t), и потому [c.167]

 

, (4.08)

где

 

(4.09)

Как мы уже видели, функции еzt составляют особенно интересное семейство с точки зрения оператора (4.02), поскольку

 

, (4.10)

и оператор задержки становится просто множителем, зависящим от z. Оператор (4.02) переходит тогда в

 

. (4.11)

и также оказывается оператором умножения, зависящим только от z. Выражение

 

(4.12)

называется представлением оператора (4.02) в виде функции частоты. Если z — комплексная величина х+iy, где х и y — действительные числа, то (4.12) переходит в

 

(4.13)

Отсюда следует ввиду известного неравенства Шварца для интегралов, что если y>0 и

 

, (4.14)

то [c.168]

 

. (4.15)

Это значит, что А(х+iу) — ограниченная голоморфная функция комплексной переменной в каждой полуплоскости x>=>0, а функция A(iy) представляет в некотором весьма определенном смысле граничные значения этой функции.

Положим

 

, (4.16)

где u и v — действительные числа. Тогда x+iy определится как функция (не обязательно однозначная) от u+iv. Это функция аналитическая, хотя и мероморфная, за исключением точек u+iv, соответствующих точкам z=x+– iy, где А(z)/z=0. Граница х=0 перейдет в кривую с параметрическим уравнением

 

(y действительное). (4.17)

Эта новая кривая может пересекать саму себя любое число раз, но в общем случае она будет делить плоскость на две области. Рассмотрим кривую (4.17), вычерченную в направлении возрастания y от — до +. Если идти от нее вправо по непрерывной линии, не пересекающей снова кривую (4.17), можно попасть в те или иные точки плоскости. Точки, не входящие в это множество и не лежащие на кривой (4.17), мы будем называть внешними точками. Часть кривой (4.17), содержащую предельные точки внешних точек, назовем эффективной границей. Все остальные точки будут именоваться внутренними точками. На нашем чертеже с границами, проведенными в направлении стрелок (рис. 1), внутренние точки заштрихованы, а эффективная граница выделена жирной линией.

  • Читать дальше
  • 1
  • ...
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: