Шрифт:
Как мы видели, в фотографии и аналогичных процессах [c.196] сообщение может запасаться в форме постоянного изменения некоторых запасающих элементов. Чтобы запасенная информация вводилась обратно в систему, эти изменения должны воздействовать каким-то образом на сообщения, проходящие через систему. Один из простейших способов добиться этого — применить для постоянного запасания элементы, которые нормально участвуют в передаче сообщений и в которых запасание информации изменяет способ передачи ими сообщений на все будущее время. В нервной системе нейроны и синапсы являются как раз такими элементами, и вполне правдоподобно, что информация сохраняется в мозгу долгое время благодаря изменениям порогов нейронов, или, другими словами, благодаря изменениям проницаемости каждого синапса для сообщений. Многие из нас полагают, за неимением лучшего объяснения, что запасание информации в мозгу действительно может происходить таким образом. Легко представить себе такое запасание в форме открытия новых путей или разрыва старых. Кажется вполне установленным, что после рождения в мозгу не образуется новых нейронов. Возможно, хотя и не доказано, что не образуется также новых синапсов, и правдоподобна догадка, что основные изменения порогов в процессе запоминания суть их повышения. Если это так, то вся наша жизнь построена по принципу «Шагреневой кожи» Бальзака, и самый процесс обучения и запоминания истощает наши способности обучения и запоминания, пока жизнь не расточит наш основной капитал жизнеспособности. Очень может быть, что так оно и есть. Этим, возможно, объясняются некоторые явления старения. Впрочем, в целом старение — явление слишком сложное, чтобы его можно было объяснить только этим.
Мы уже говорили о вычислительной машине — и тем самым о мозге — как о логической машине. Полезно посмотреть, какой свет проливают на логику такие машины, естественные и искусственные. Здесь основной является работа Тьюринга [158] . Мы уже сказали раньше, [c.197] что machina rationatrix [159] есть не что иное, как calculus ratiocinator [160] Лейбница, снабженное двигателем; и как исчисление это явилось началом современной математической логики, так и технические разработки наших дней неизбежно должны пролить новый свет на логику. Современная наука является операциональной, т. е. она считает всякое утверждение по существу связанным с возможными экспериментами или наблюдаемыми процессами [161] . С этих позиций изучение логики должно свестись к изучению логической машины, нервной или механической, со всеми ее неустранимыми ограничениями и несовершенствами.
158
Turing A.M. On Computable Numbres, with an Application to the Entscheidungsproblem. // Proceedings of the London Mathematical Society. — Ser. 2. — 1936. — Vol. 42. — P. 230—265.
159
Думающая машина, рассуждающая машина (лат.) — Прим. ред.
160
Исчисление умозаключений. — Прим. ред.
161
Концепция операционализма, связываемая обычно с именем американского физика П. Бриджмена. — Прим. ред.
Некоторые читатели могут возразить, что тем самым логика сводится к психологии, а это науки явно разные. Последнее верно в том смысле, что многие психологические состояния и движения мысли не согласуются с канонами логики. В психологии многое чуждо логике, но — и это очень важно — всякая логика, имеющая для нас смысл, не может содержать ничего такого, чего человеческий разум, а следовательно, и человеческая нервная система не были бы способны объять. Всякая логика ограничена в силу ограничений человеческого ума, которым он подвержен в деятельности, именуемой логическим мышлением.
Например, в математике мы посвящаем много времени рассуждениям о бесконечности, но эти рассуждения и сопровождающие их доказательства в действительности не бесконечны. Всякое допустимое доказательство содержит лишь конечное число шагов. Правда, доказательство посредством математической индукции кажется содержащим бесконечное число шагов; это лишь видимость. На самом деле оно содержит лишь следующие шаги:
1) Рn есть предложение, связанное с числом n;
2) Рn доказано для n=1;
3) если Рn справедливо, то справедливо и Рn+1;
4) поэтому Рn справедливо для всякого положительного целого n. [c.198]
Конечно, где-то в наших логических посылках должна быть такая, которая бы оправдывала подобный вывод. Тем не менее математическая индукция, о которой мы говорим, весьма отлична от полной индукции по бесконечному множеству. Это относится и к более утонченным видам математической индукции, таким, как трансфинитная индукция, встречающаяся в некоторых математических дисциплинах.
В результате возникают весьма любопытные ситуации, когда мы можем, при достаточном времени и достаточных вычислительных средствах, доказать каждый отдельный случай теоремы Рn, но, не располагая систематическим способом объяснения этих доказательств в одном выводе, не зависящем от n, как это было в математической индукции, не можем доказать Рn для всех n. Возможность такого исхода признана в математике — дисциплине, столь блестяще развитой Гёделем и его школой.
Доказательство есть логический процесс, который должен привести к определенному заключению через конечное число шагов. Напротив, логическая машина, действующая по определенным правилам, не обязательно должна прийти когда-либо к заключению. Она может продолжать свою работу шаг за шагом, никогда не останавливаясь; при этом она будет либо совершать последовательность действий все увеличивающейся сложности, либо повторять один и тот же процесс, подобно вечному шаху в шахматах. Это действительно происходит в случае некоторых парадоксов Кантора и Рассела. Рассмотрим, например, класс всех классов, не являющихся членами самих себя. Будет ли этот класс членом самого себя? Если да, то он определенно не является членом самого себя; а если нет, он столь же определенно обязан быть членом самого себя. Машина для решения этого вопроса будет попеременно давать ответы «да», «нет», «да», «нет» и т. д. и никогда не придет к равновесию.
Решение, некогда предложенное Бертраном Расселом для его парадоксов, состоит в том, что каждому утверждению приписывается особая величина, так называемый «тип», позволяющая нам различать утверждения, на первый взгляд формально одинаковые сообразно природе предметов, к которым они относятся: являются [c.199] ли эти предметы «вещами» в простейшем смысле, классами «вещей», классами классов «вещей» и т. д. Наш метод решения парадоксов также состоит в присвоении некоторого параметра каждому утверждению: этим параметром служит момент времени, в который оно высказано. В обоих случаях мы вводим параметр, который можно назвать параметром униформизации, и с его помощью устраняем двусмысленность, которая была обусловлена лишь пренебрежением этим параметром.