Шрифт:
где V= дисперсия ожидаемых прибылей портфеля из уравнения (6.06);
N = число ценных бумаг, составляющих портфель;
Е = ожидаемая прибыль портфеля;
X. = процентный вес ценной бумаги i;
U. = ожидаемая прибыль ценной бумаги i;
L, = первый множитель Лагранжа;
L = второй множитель Лагранжа.
Мы получим портфель с минимальной дисперсией (т.е. минимальным риском), приравняв к нулю частные производные функции Т по всем переменньм.
Давайте снова вернемся к нашим четырем инвестициям: Toxico, Incubeast Corp., LA Garb и сберегательному счету. Если мы возьмем первую частную производную Т по Х1, то получим:
Приравняв это выражение нулю и разделив обе части уравнения на 2, получим:
Таким же образом:
Таким образом, проблему минимизации V при данном Е для портфеля с N компонентами можно решить с помощью системы N + 2 уравнений с N + 2 неизвестными. Для случая с четырьмя компонентами обобщенная форма будет иметь следующий вид:
где Е = ожидаемая прибыль портфеля;
Хi = процентный вес ценной бумаги i;
Ui = ожидаемая прибыль по ценной бумаге i;
COV А, Б = ковариация между ценными бумагами А и Б;
L1 = первый множитель Лагранжа;
12 = второй множитель Лагранжа.
Обобщенную форму можно использовать для любого числа компонентов. Например, если речь идет о трех компонентах (т.е. N = 3), система уравнений будет выглядеть следующим образом:
Прежде чем решать систему уравнений, необходимо задать уровень ожидаемой прибыли Е. Решением будет комбинация весов, которая даст искомое Е при наименьшей дисперсии. После того как вы определитесь с выбором Е, у вас будут все входные переменные, необходимые для построения матрицы коэффициентов.
Переменная Е в правой части первого уравнения — это значение прибыли. для которой вы хотите определить комбинацию ценных бумаг в портфеле. Первое уравнение говорит о том, что сумма всех ожидаемых прибылей, умноженных на
соответствующие веса, должна равняться заданному Е. Второе уравнение отражает тот факт, что сумма весов должна быть равна 1. Была показана матрица для случая с тремя ценными бумагами, но вы можете использовать обобщенную форму для N ценных бумаг.
Возьмем ожидаемые прибыли и ковариации из уже известной таблицы ковариаций и подставим коэффициенты в обобщенную форму. Таким образом из коэффициентов обобщенной формы можно создать матрицу. В случае четырех компонентов (N = 4) мы получим 6 рядов (N + 2):
X1 | X2 | X3 | X4 | L1 | L2 | Ответ |
0,095 | 0,13 | 0,21 | 0,085 | Е | ||
1 | 1 | 1 | 1 | 1 | ||
0,1 | – 0,0237 | 0,01 | 0 | 0,095 | 1 | 0 |
– 0,0237 | 0,25 | 0,079 | 0 | 0,13 | 1 | 0 |
0,01 | 0,079 | 0,4 | 0 | 0,21 | 1 | 0 |
0 | 0 | 0 | 0 | 0,085 | 1 | 0 |
Отметьте, что мы получили 6 столбцов коэффициентов. Если добавить столбец свободных членов к матрице коэффициентов, мы получим расширенную матрицу.
Заметьте, что коэффициенты в матрице соответствуют нашей обобщенной форме:
Матрица является удобным представлением этих уравнений. Чтобы решить систему уравнений, необходимо задать Е. Ответы, полученные при решении этой
системы уравнений, дадут оптимальные веса, минимизирующие дисперсию прибыли всего портфеля для выбранного уровня Е.
Допустим, мы хотим найти решение для Е = 0,14, что соответствует прибыли в 14%. Подставив в матрицу 0,14 для Е и нули для переменных L1 и L2 в первых двух строках, мы получим следующую матрицу:
X1 | X2 | Х3 | X4 | L1 | L2 | Ответ |
0,095 | 0,13 | 0,21 | 0,085 | 0 | 0 | 0,14 |
1 | 1 | 1 | 1 | 0 | 0 | 1 |
0,1 | – 0,0237 | 0,01 | 0 | 0,095 | 1 | 0 |
– 0,0237 | 0,25 | 0,079 | 0 | 0,13 | 1 | 0 |
0,01 | 0,079 | 0,4 | 0 | 0,21 | 1 | 0 |
0 | 0 | 0 | 0 | 0,085 | 1 | 0 |