Вход/Регистрация
Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров
вернуться

РАЛЬФ ВИНС РАЛЬФ

Шрифт:

где V= дисперсия ожидаемых прибылей портфеля из уравнения (6.06);

N = число ценных бумаг, составляющих портфель;

Е = ожидаемая прибыль портфеля;

X. = процентный вес ценной бумаги i;

U. = ожидаемая прибыль ценной бумаги i;

L, = первый множитель Лагранжа;

L = второй множитель Лагранжа.

Мы получим портфель с минимальной дисперсией (т.е. минимальным риском), приравняв к нулю частные производные функции Т по всем переменньм.

Давайте снова вернемся к нашим четырем инвестициям: Toxico, Incubeast Corp., LA Garb и сберегательному счету. Если мы возьмем первую частную произ­водную Т по Х1, то получим:

Приравняв это выражение нулю и разделив обе части уравнения на 2, получим:

Таким же образом:

Таким образом, проблему минимизации V при данном Е для портфеля с N компонентами можно решить с помощью системы N + 2 уравнений с N + 2 неиз­вестными. Для случая с четырьмя компонентами обобщенная форма будет иметь следующий вид:

где Е = ожидаемая прибыль портфеля;

Хi = процентный вес ценной бумаги i;

Ui = ожидаемая прибыль по ценной бумаге i;

COV А, Б = ковариация между ценными бумагами А и Б;

L1 = первый множитель Лагранжа;

12 = второй множитель Лагранжа.

Обобщенную форму можно использовать для любого числа компонентов. Напри­мер, если речь идет о трех компонентах (т.е. N = 3), система уравнений будет выг­лядеть следующим образом:

Прежде чем решать систему уравнений, необходимо задать уровень ожидаемой прибыли Е. Решением будет комбинация весов, которая даст искомое Е при наименьшей дисперсии. После того как вы определитесь с выбором Е, у вас бу­дут все входные переменные, необходимые для построения матрицы коэффи­циентов.

Переменная Е в правой части первого уравнения — это значение прибыли. для которой вы хотите определить комбинацию ценных бумаг в портфеле. Первое уравнение говорит о том, что сумма всех ожидаемых прибылей, умноженных на

соответствующие веса, должна равняться заданному Е. Второе уравнение отража­ет тот факт, что сумма весов должна быть равна 1. Была показана матрица для слу­чая с тремя ценными бумагами, но вы можете использовать обобщенную форму для N ценных бумаг.

Возьмем ожидаемые прибыли и ковариации из уже известной таблицы ковариаций и подставим коэффициенты в обобщенную форму. Таким образом из ко­эффициентов обобщенной формы можно создать матрицу. В случае четырех ком­понентов (N = 4) мы получим 6 рядов (N + 2):

X1 X2 X3 X4 L1 L2 Ответ
0,095 0,13 0,21 0,085 Е
1 1 1 1 1
0,1 – 0,0237 0,01 0 0,095 1 0
– 0,0237 0,25 0,079 0 0,13 1 0
0,01 0,079 0,4 0 0,21 1 0
0 0 0 0 0,085 1 0

Отметьте, что мы получили 6 столбцов коэффициентов. Если добавить столбец свободных членов к матрице коэффициентов, мы получим расширенную матрицу.

Заметьте, что коэффициенты в матрице соответствуют нашей обобщенной форме:

Матрица является удобным представлением этих уравнений. Чтобы решить сис­тему уравнений, необходимо задать Е. Ответы, полученные при решении этой

системы уравнений, дадут оптимальные веса, минимизирующие дисперсию при­были всего портфеля для выбранного уровня Е.

Допустим, мы хотим найти решение для Е = 0,14, что соответствует прибыли в 14%. Подставив в матрицу 0,14 для Е и нули для переменных L1 и L2 в первых двух строках, мы получим следующую матрицу:

X1 X2 Х3 X4 L1 L2 Ответ
0,095 0,13 0,21 0,085 0 0 0,14
1 1 1 1 0 0 1
0,1 – 0,0237 0,01 0 0,095 1 0
– 0,0237 0,25 0,079 0 0,13 1 0
0,01 0,079 0,4 0 0,21 1 0
0 0 0 0 0,085 1 0
  • Читать дальше
  • 1
  • ...
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: